ﻻ يوجد ملخص باللغة العربية
Magnons and phonons are two fundamental neutral excitations of magnetically ordered materials which can significantly dominate the low-energy thermal properties. In this work we study the interplay of magnons and phonons in honeycomb and Kagome lattices. When the mirror reflection with respect to the magnetic ordering direction is broken, the symmetry-allowed in-plane Dzyaloshinskii-Moriya (DM) interaction will couple the magnons to the phonons and the magnon-polaron states are formed. Besides, both lattice structures also allow for an out-of-plane DM interaction rendering the uncoupled magnons to be topological. Our aim is to study the interplay of such topological magnons with phonons. We show that the hybridization between magnons and phonons can significantly redistribute the Berry curvature among the bands. Especially, we found that the topological magnon band becomes trivial while the hybridized states at lower energy acquire Berry curvature strongly peaked near the avoided crossings. As such the thermal Hall conductivity of topological magnons shows significant changes due to coupling to the phonons.
We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon-polarons, are analytically shown to be topologically nontrivial, possessing finite Ch
Topological magnon is a vibrant research field gaining more and more attention in the past few years. Among many theoretical proposals and limited experimental studies, ferromagnetic Kagome lattice emerges as one of the most elucidating systems. Here
A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the $mathbb{Z}_2$ index. This quantity distinguishes a nontrivial topological system from a trivial one. A topo
We investigate spin dynamics of artificial spin ice (ASI) where topological defects confine magnon modes in Ni$_{81}$Fe$_{19}$ nanomagnets arranged on an interconnected kagome lattice. Brillouin light scattering microscopy performed on magnetically d
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition i