ﻻ يوجد ملخص باللغة العربية
With the vast amount of data collected on football and the growth of computing abilities, many games involving decision choices can be optimized. The underlying rule is the maximization of an expected utility of outcomes and the law of large numbers. The data available allows us to compute with high accuracy the probabilities of outcomes of decisions and the well defined points system in the game allows us to have the necessary terminal utilities. With some well established theory we can then optimize choices at a single play level.
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance it is crucial to guarantee the
Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner. We introduce the Google Resear
Competitive Self-Play (CSP) based Multi-Agent Reinforcement Learning (MARL) has shown phenomenal breakthroughs recently. Strong AIs are achieved for several benchmarks, including Dota 2, Glory of Kings, Quake III, StarCraft II, to name a few. Despite
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data. Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms take the approach of constraining or regularizing the policy w
We introduce a new virtual environment for simulating a card game known as Big 2. This is a four-player game of imperfect information with a relatively complicated action space (being allowed to play 1,2,3,4 or 5 card combinations from an initial sta