We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit techniques from the theory of large deviations like the tilted ensemble and the Doob transform. Our results here generalise to open quantum systems fluctuation relations previously obtained for classical Markovian systems, and add to the vast literature on fluctuation relations in the quantum domain, but without resorting to the standard two-point measurement scheme. We illustrate our findings with three examples in order to highlight and discuss the main features of our general result.