ﻻ يوجد ملخص باللغة العربية
Dynamical models of Solar System evolution have suggested that P-/D-type volatile-rich asteroids formed in the outer Solar System and may be genetically related to the Jupiter Trojans, the comets and small KBOs. Indeed, their spectral properties resemble that of anhydrous cometary dust. High-angular-resolution images of P-type asteroid (87) Sylvia with VLT/SPHERE were used to reconstruct its 3D shape, and to study the dynamics of its two satellites. We also model Sylvias thermal evolution. The shape of Sylvia appears flattened and elongated. We derive a volume-equivalent diameter of 271 +/- 5 km, and a low density of 1378 +/- 45 kg.m-3. The two satellites orbit Sylvia on circular, equatorial orbits. The oblateness of Sylvia should imply a detectable nodal precession which contrasts with the fully-Keplerian dynamics of the satellites. This reveals an inhomogeneous internal structure, suggesting that Sylvia is differentiated. Sylvias low density and differentiated interior can be explained by partial melting and mass redistribution through water percolation. The outer shell would be composed of material similar to interplanetary dust particles (IDPs) and the core similar to aqueously altered IDPs or carbonaceous chondrite meteorites such as the Tagish Lake meteorite. Numerical simulations of the thermal evolution of Sylvia show that for a body of such size, partial melting was unavoidable due to the decay of long-lived radionuclides. In addition, we show that bodies as small as 130-150 km in diameter should have followed a similar thermal evolution, while smaller objects, such as comets and the KBO Arrokoth, must have remained pristine, in agreement with in situ observations of these bodies. NASA Lucy mission target (617) Patroclus (diameter~140 km) may, however, be differentiated.
The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then u
Small bodies, the unaccreted leftovers of planetary formation, are often mistaken for the leftovers of planetary science in the sense that they are everything else after the planets and their satellites (or sometimes just their regular satellites) ar
Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD~20782, with an orbital period of 597~days and an eccentricity of 0.96. Here we pr
We present significant differences in the simulated atmospheric flow for warm, tidally-locked small Neptunes and super Earths (based on a nominal GJ 1214b) when solving the simplified, and commonly used, primitive dynamical equations or the full Navi
We investigate the electromagnetic interaction of a relativistic stellar wind with a planet or a smaller body in orbit around a pulsar. This may be relevant to objects such as PSR B1257+12 and PSR B1620-26 that are expected to hold a planetary system