ﻻ يوجد ملخص باللغة العربية
We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory, which we exploit in terms of a dynamical method. We present three sample applications of our results to Ka{c} interactions, randomly diluted models, and models with an asymptotically vanishing external field.
The 1-arm exponent $rho$ for the ferromagnetic Ising model on $mathbb{Z}^d$ is the critical exponent that describes how fast the critical 1-spin expectation at the center of the ball of radius $r$ surrounded by plus spins decays in powers of $r$. Sup
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa
A coupled forward-backward stochastic differential system (FBSDS) is formulated in spaces of fields for the incompressible Navier-Stokes equation in the whole space. It is shown to have a unique local solution, and further if either the Reynolds numb
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate
We present a new dynamical proof of the Thouless-Anderson-Palmer (TAP) equations for the classical Sherrington-Kirkpatrick spin glass at sufficiently high temperature. In our derivation, the TAP equations are a simple consequence of the decay of the