ﻻ يوجد ملخص باللغة العربية
A number of domain specific languages, such as circuits or data-science workflows, are best expressed as diagrams of boxes connected by wires. Unfortunately, functional languages have traditionally been ill-equipped to embed this sort of languages. The Arrow abstraction is an approximation, but we argue that it does not capture the right properties. A faithful abstraction is Symmetric Monoidal Categories (SMCs), but,so far,it hasnt been convenient to use. We show how the advent of linear typing in Haskell lets us bridge this gap. We provide a library which lets us program in SMCs with linear functions instead of SMC combinators. This considerably lowers the syntactic overhead of the EDSL to be on par with that of monadic DSLs. A remarkable feature of our library is that, contrary to previously known methods for categories, it does not use any metaprogramming.
Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations.
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $inf
Applications of category theory often involve symmetric monoidal categories (SMCs), in which abstract processes or operations can be composed in series and parallel. However, in 2020 there remains a dearth of computational tools for working with SMCs
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is a
We show how to construct a Gamma-bicategory from a symmetric monoidal bicategory, and use that to show that the classifying space is an infinite loop space upon group completion. We also show a way to relate this construction to the classic Gamma-cat