ﻻ يوجد ملخص باللغة العربية
Causality and the generalized laws of black hole thermodynamics imply a bound, known as the textit{Bekenstein--Hod universal bound}, on the information emission rate of a perturbed system. Using a time-domain ringdown analysis, we investigate whether remnant black holes produced by the coalescences observed by Advanced LIGO and Advanced Virgo obey this bound. We find that the bound is verified by the astrophysical black hole population with $94%$ probability, providing a first confirmation of the Bekenstein--Hod bound from black hole systems.
A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekensteins entropy bounds. We establi
The primary and secondary masses of the binary black holes (BBH) reported by LIGO/Virgo are correlated with a narrow dispersion that appears to increase in proportion to mass. The mean binary mass ratio $1.45pm0.07$ we show is consistent with pairs d
Various techniques to tackle the black hole information paradox have been proposed. A new way out to tackle the paradox is via the use of a pseudo-density operator. This approach has successfully dealt with the problem with a two qubit entangle syste
The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the c
We have examined gravitational wave echo signals for nine binary black hole merger events observed by Advanced LIGO and Virgo during the first and second observation runs. To construct an echo template, we consider Kerr spacetime, where the event hor