ترغب بنشر مسار تعليمي؟ اضغط هنا

A Result based Portable Framework for Spoken Language Understanding

95   0   0.0 ( 0 )
 نشر من قبل Lizhi Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spoken language understanding (SLU), which is a core component of the task-oriented dialogue system, has made substantial progress in the research of single-turn dialogue. However, the performance in multi-turn dialogue is still not satisfactory in the sense that the existing multi-turn SLU methods have low portability and compatibility for other single-turn SLU models. Further, existing multi-turn SLU methods do not exploit the historical predicted results when predicting the current utterance, which wastes helpful information. To gap those shortcomings, in this paper, we propose a novel Result-based Portable Framework for SLU (RPFSLU). RPFSLU allows most existing single-turn SLU models to obtain the contextual information from multi-turn dialogues and takes full advantage of predicted results in the dialogue history during the current prediction. Experimental results on the public dataset KVRET have shown that all SLU models in baselines acquire enhancement by RPFSLU on multi-turn SLU tasks.



قيم البحث

اقرأ أيضاً

Spoken Language Understanding (SLU) typically comprises of an automatic speech recognition (ASR) followed by a natural language understanding (NLU) module. The two modules process signals in a blocking sequential fashion, i.e., the NLU often has to w ait for the ASR to finish processing on an utterance basis, potentially leading to high latencies that render the spoken interaction less natural. In this paper, we propose recurrent neural network (RNN) based incremental processing towards the SLU task of intent detection. The proposed methodology offers lower latencies than a typical SLU system, without any significant reduction in system accuracy. We introduce and analyze different recurrent neural network architectures for incremental and online processing of the ASR transcripts and compare it to the existing offline systems. A lexical End-of-Sentence (EOS) detector is proposed for segmenting the stream of transcript into sentences for intent classification. Intent detection experiments are conducted on benchmark ATIS, Snips and Facebooks multilingual task oriented dialog datasets modified to emulate a continuous incremental stream of words with no utterance demarcation. We also analyze the prospects of early intent detection, before EOS, with our proposed system.
Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we rel ease SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https: //github.com/pswietojanski/slurp.
Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals. While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of na tural language processing (NLP), their merits in a closely related field, i.e., spoken language understanding (SLU) have not beed investigated. In this paper, we introduce an end-to-end neural transformer-based SLU model that can predict the variable-length domain, intent, and slots vectors embedded in an audio signal with no intermediate token prediction architecture. This new architecture leverages the self-attention mechanism by which the audio signal is transformed to various sub-subspaces allowing to extract the semantic context implied by an utterance. Our end-to-end transformer SLU predicts the domains, intents and slots in the Fluent Speech Commands dataset with accuracy equal to 98.1 %, 99.6 %, and 99.6 %, respectively and outperforms the SLU models that leverage a combination of recurrent and convolutional neural networks by 1.4 % while the size of our model is 25% smaller than that of these architectures. Additionally, due to independent sub-space projections in the self-attention layer, the model is highly parallelizable which makes it a good candidate for on-device SLU.
127 - Zhiyuan Guo , Yuexin Li , Guo Chen 2021
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amou nt of language-specific training data. In this paper, we propose a Transformer-based SLU system that works directly on phones. This acoustic-based SLU system consists of only two blocks and does not require the presence of ASR module. The first block is a universal phone recognition system, and the second block is a Transformer-based language model for phones. We verify the effectiveness of the system on an intent classification dataset in Mandarin Chinese.
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا