ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Gradient DQN Reinforcement Learning: A Provably Convergent Scheme

398   0   0.0 ( 0 )
 نشر من قبل Konstantin Avrachenkov
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the DQN reinforcement learning algorithm as a stochastic approximation scheme using the o.d.e. (for ordinary differential equation) approach and point out certain theoretical issues. We then propose a modified scheme called Full Gradient DQN (FG-DQN, for short) that has a sound theoretical basis and compare it with the original scheme on sample problems. We observe a better performance for FG-DQN.



قيم البحث

اقرأ أيضاً

We propose a novel hybrid stochastic policy gradient estimator by combining an unbiased policy gradient estimator, the REINFORCE estimator, with another biased one, an adapted SARAH estimator for policy optimization. The hybrid policy gradient estima tor is shown to be biased, but has variance reduced property. Using this estimator, we develop a new Proximal Hybrid Stochastic Policy Gradient Algorithm (ProxHSPGA) to solve a composite policy optimization problem that allows us to handle constraints or regularizers on the policy parameters. We first propose a single-looped algorithm then introduce a more practical restarting variant. We prove that both algorithms can achieve the best-known trajectory complexity $mathcal{O}left(varepsilon^{-3}right)$ to attain a first-order stationary point for the composite problem which is better than existing REINFORCE/GPOMDP $mathcal{O}left(varepsilon^{-4}right)$ and SVRPG $mathcal{O}left(varepsilon^{-10/3}right)$ in the non-composite setting. We evaluate the performance of our algorithm on several well-known examples in reinforcement learning. Numerical results show that our algorithm outperforms two existing methods on these examples. Moreover, the composite settings indeed have some advantages compared to the non-composite ones on certain problems.
We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorit hms for linear Markov decision processes. In specific, for the batch learning model, our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrt{d^3H^3T} + dHT/B)$ regret, where $d$ is the dimension of the feature mapping, $H$ is the episode length, $T$ is the number of interactions and $B$ is the number of batches. Our result suggests that it suffices to use only $sqrt{T/dH}$ batches to obtain $tilde O(sqrt{d^3H^3T})$ regret. For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrt{d^3H^3T[1+T/(dH)]^{dH/B}})$ regret, which implies that $dHlog T$ policy switches suffice to obtain the $tilde O(sqrt{d^3H^3T})$ regret. Our algorithms achieve the same regret as the LSVI-UCB algorithm (Jin et al., 2019), yet with a substantially smaller amount of adaptivity.
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr ising phenomenon for two-layer fully connected ReLU activated neural networks. For an $m$ hidden node shallow neural network with ReLU activation and $n$ training data, we show as long as $m$ is large enough and no two inputs are parallel, randomly initialized gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. Our analysis relies on the following observation: over-parameterization and random initialization jointly restrict every weight vector to be close to its initialization for all iterations, which allows us to exploit a strong convexity-like property to show that gradient descent converges at a global linear rate to the global optimum. We believe these insights are also useful in analyzing deep models and other first order methods.
We present theoretical results on the convergence of emph{non-convex} accelerated gradient descent in matrix factorization models with $ell_2$-norm loss. The purpose of this work is to study the effects of acceleration in non-convex settings, where p rovable convergence with acceleration should not be considered a emph{de facto} property. The technique is applied to matrix sensing problems, for the estimation of a rank $r$ optimal solution $X^star in mathbb{R}^{n times n}$. Our contributions can be summarized as follows. $i)$ We show that acceleration in factored gradient descent converges at a linear rate; this fact is novel for non-convex matrix factorization settings, under common assumptions. $ii)$ Our proof technique requires the acceleration parameter to be carefully selected, based on the properties of the problem, such as the condition number of $X^star$ and the condition number of objective function. $iii)$ Currently, our proof leads to the same dependence on the condition number(s) in the contraction parameter, similar to recent results on non-accelerated algorithms. $iv)$ Acceleration is observed in practice, both in synthetic examples and in two real applications: neuronal multi-unit activities recovery from single electrode recordings, and quantum state tomography on quantum computing simulators.
Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. Typically, the gradient of any such loss function fails to be dissipative making the use of widely-accepted (stochastic) gradient descent methods problematic. We offer a new learning algorithm based on an appropriately constructed variant of the popular stochastic gradient Langevin dynamics (SGLD), which is called tamed unadjusted stochastic Langevin algorithm (TUSLA). We also provide a nonasymptotic analysis of the new algorithms convergence properties in the context of non-convex learning problems with the use of ANNs. Thus, we provide finite-time guarantees for TUSLA to find approximate minimizers of both empirical and population risks. The roots of the TUSLA algorithm are based on the taming technology for diffusion processes with superlinear coefficients as developed in citet{tamed-euler, SabanisAoAP} and for MCMC algorithms in citet{tula}. Numerical experiments are presented which confirm the theoretical findings and illustrate the need for the use of the new algorithm in comparison to vanilla SGLD within the framework of ANNs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا