ترغب بنشر مسار تعليمي؟ اضغط هنا

Gluon PDF from Quark dressing in the Nucleon and Pion

76   0   0.0 ( 0 )
 نشر من قبل Peter Tandy
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Gluon dressing of the light quarks within hadrons is very strong and extremely important in that it dynamically generates most of the observable mass through the breaking of chiral symmetry. The quark and gluon parton densities, $q(x)$ and $g(x)$, are necessarily interrelated since any gluon emission and absorption process, especially dressing of a quark, contributes to $g(x)$ and modifies $q(x)$. Guided by long-established results for the parton-in-parton distributions from a strict 1-loop perturbative analysis of a quark target, we extend the non-perturbative QCD approach based on the Rainbow-Ladder truncation of the Dyson-Schwinger equations to describe the interrelated valence $q_{rm v}(x)$ and the dressing-gluon $g(x)$ for a hadron at its intrinsic model scale. We employ the pion description from previous DSE work that accounted for the gluon-in-quark effect and introduce a simple model of the nucleon for exploratory purposes. We find typically mbox{$langle x rangle_g sim 0.20$} for both pion and nucleon at the model scale, and the valence quark helicity contributes 52% of nucleon spin. We deduce both $q_{rm v}(x)$ and $g(x)$ from 30 calculated Mellin moments, and after adopting existing data analysis results for $q_{rm sea}(x)$, we find that NLO scale evolution produces $g(x)$ in good agreement with existing data analysis results for the pion at 1.3 GeV and the nucleon at 5 GeV$^2$. At the scale 2 GeV typical of lattice-QCD calculations, we obtain mbox{$langle x rangle_g^{rm N} = 0.42$} in good agreement with 0.38 from the average of recent lattice-QCD calculations.



قيم البحث

اقرأ أيضاً

The holographic light-front QCD framework provides a unified nonperturbative description of the hadron mass spectrum, form factors and quark distributions. In this article we extend holographic QCD in order to describe the gluonic distribution in bot h the proton and pion from the coupling of the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-de Sitter space, together with constraints imposed by the Veneziano model without additional free parameters. The gluonic and quark distributions are shown to have significantly different effective QCD scales.
We present an extraction of the pion-nucleon ($pi N$) scattering lengths from low-energy $pi N$ scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scatteri ng-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large $pi N$ $sigma$-term, $sigma_{pi N}=58(5)$ MeV, in agreement with, albeit less precise than, the determination from pionic atoms.
134 - Keh-Fei Liu 2020
We point out a problem of the phenomenological definition of the valence partons as the difference between the partons and antipartons in the context of the NNLO evolution equations. After demonstrating that the classification of the parton degrees o f freedom (PDF) of the parton distribution functions (PDFs) are the same in the QCD path-intergral formulations of the hadronic tensor and the quasi-PDF with LaMET, we resolve the problem by showing that the proper definition of the valence should be in terms of those in the connected insertions only. We also prove that the strange partons appear as the disconnected sea in the nucleon.
We present lattice results on the valence-quark structure of the pion using a coordinate space method within the framework of Large Momentum Effective Theory (LaMET). In this method one relies on the matrix elements of a Euclidean correlator in boost ed hadronic states, which have an operator product expansion at short distance that allows us to extract the moments of PDFs. We renormalize the Euclidean correlator by forming the reduced Ioffe-time distribution (rITD), and reconstruct the second and fourth moments of the pion PDF by taking into account of QCD evolution effects.
117 - Huey-Wen Lin 2020
We present the first lattice calculation of the nucleon isovector unpolarized generalized parton distribution (GPD) at the physical pion mass using a lattice ensemble with 2+1+1 flavors of highly improved staggered quarks (HISQ) generated by MILC Col laboration, with lattice spacing $aapprox 0.09$~fm and volume $64^3times 96$. We use momentum-smeared sources to improve the signal at nucleon boost momentum $P_z approx 2.2$ GeV, and report results at nonzero momentum transfers in $[0.2,1.0]text{ GeV}^2$. Nonperturbative renormalization in RI/MOM scheme is used to obtain the quasi-distribution before matching to the lightcone GPDs. The three-dimensional distributions $H(x,Q^2)$ and $E(x,Q^2)$ at $xi=0$ are presented, along with the three-dimensional nucleon tomography and impact-parameter--dependent distribution for selected Bjorken $x$ at $mu=3$ GeV in $overline{text{MS}}$ scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا