ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Graphs with Villainy 2

56   0   0.0 ( 0 )
 نشر من قبل Sogol Jahanbekam
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f$ be an optimal proper coloring of a graph $G$ and let $c$ be a coloring of the vertices of $G$ obtained by permuting the colors on vertices in the proper coloring $f$. The villainy of $c$, written $B(c)$, is the minimum number of vertices that must be recolored to obtain a proper coloring of $G$ with the additional condition that the number of times each color is used does not change. The villainy of $G$ is defined as $B(G)=max_{c}B(c)$, over all optimal proper colorings of $G$. In this paper, we characterize graphs $G$ with $B(G)=2$.



قيم البحث

اقرأ أيضاً

Getting inspired by the famous no-three-in-line problem and by the general position subset selection problem from discrete geometry, the same is introduced into graph theory as follows. A set $S$ of vertices in a graph $G$ is a general position set i f no element of $S$ lies on a geodesic between any two other elements of $S$. The cardinality of a largest general position set is the general position number ${rm gp}(G)$ of $G.$ In cite{ullas-2016} graphs $G$ of order $n$ with ${rm gp}(G)$ $in {2, n, n-1}$ were characterized. In this paper, we characterize the classes of all connected graphs of order $ngeq 4$ with the general position number $n-2.$
212 - Xiaogang Liu , Pengli Lu 2014
Let $P_n$ and $C_n$ denote the path and cycle on $n$ vertices respectively. The dumbbell graph, denoted by $D_{p,k,q}$, is the graph obtained from two cycles $C_p$, $C_q$ and a path $P_{k+2}$ by identifying each pendant vertex of $P_{k+2}$ with a ver tex of a cycle respectively. The theta graph, denoted by $Theta_{r,s,t}$, is the graph formed by joining two given vertices via three disjoint paths $P_{r}$, $P_{s}$ and $P_{t}$ respectively. In this paper, we prove that all dumbbell graphs as well as theta graphs are determined by their Laplacian spectra.
Let $G=(V,E)$ be a finite undirected graph. Orient the edges of $G$ in an arbitrary way. A $2$-cycle on $G$ is a function $d : E^2to mathbb{Z}$ such for each edge $e$, $d(e, cdot)$ and $d(cdot, e)$ are circulations on $G$, and $d(e, f) = 0$ whenever $e$ and $f$ have a common vertex. We show that each $2$-cycle is a sum of three special types of $2$-cycles: cycle-pair $2$-cycles, Kuratowski $2$-cycles, and quad $2$-cycles. In case that the graph is Kuratowski connected, we show that each $2$-cycle is a sum of cycle-pair $2$-cycles and at most one Kuratowski $2$-cycle. Furthermore, if $G$ is Kuratowski connected, we characterize when every Kuratowski $2$-cycle is a sum of cycle-pair $2$-cycles. A $2$-cycles $d$ on $G$ is skew-symmetric if $d(e,f) = -d(f,e)$ for all edges $e,fin E$. We show that each $2$-cycle is a sum of two special types of skew-symmetric $2$-cycles: skew-symmetric cycle-pair $2$-cycles and skew-symmetric quad $2$-cycles. In case that the graph is Kuratowski connected, we show that each skew-symmetric $2$-cycle is a sum of skew-symmetric cycle-pair $2$-cycles. Similar results like this had previously been obtained by one of the authors for symmetric $2$-cycles. Symmetric $2$-cycles are $2$-cycles $d$ such that $d(e,f)=d(f,e)$ for all edges $e,fin E$.
Let $k$ be a positive integer, and $G$ be a $k$-connected graph. An edge-coloured path is emph{rainbow} if all of its edges have distinct colours. The emph{rainbow $k$-connection number} of $G$, denoted by $rc_k(G)$, is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by $k$ internally vertex-disjoint rainbow paths. The function $rc_k(G)$ was introduced by Chartrand, Johns, McKeon and Zhang in 2009, and has since attracted significant interest. Let $t_k(n,r)$ denote the minimum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)le r$. Let $s_k(n,r)$ denote the maximum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)ge r$. The functions $t_1(n,r)$ and $s_1(n,r)$ have previously been studied by various authors. In this paper, we study the functions $t_2(n,r)$ and $s_2(n,r)$. We determine bounds for $t_2(n,r)$ which imply that $t_2(n,2)=(1+o(1))nlog_2 n$, and $t_2(n,r)$ is linear in $n$ for $rge 3$. We also provide some remarks about the function $s_2(n,r)$.
We consider pressing sequences, a certain kind of transformation of graphs with loops into empty graphs, motivated by an application in phylogenetics. In particular, we address the question of when a graph has precisely one such pressing sequence, th us answering an question from Cooper and Davis (2015). We characterize uniquely pressable graphs, count the number of them on a given number of vertices, and provide a polynomial time recognition algorithm. We conclude with a few open questions. Keywords: Pressing sequence, adjacency matrix, Cholesky factorization, binary matrix
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا