ﻻ يوجد ملخص باللغة العربية
First-order accurate degenerate variational integration (DVI) was introduced in C. L. Ellison et. al, Phys. Plasmas 25, 052502 (2018) for systems with a degenerate Lagrangian, i.e. one in which the velocity-space Hessian is singular. In this paper we introducing second order accurate DVI schemes, both with and without non-uniform time stepping. We show that it is not in general possible to construct a second order scheme with a preserved two-form by composing a first order scheme with its adjoint, and discuss the conditions under which such a composition is possible. We build two classes of second order accurate DVI schemes. We test these second order schemes numerically on two systems having noncanonical variables, namely the magnetic field line and guiding center systems. Variational integration for Hamiltonian systems with nonuniform time steps, in terms of an extended phase space Hamiltonian, is generalized to noncanonical variables. It is shown that preservation of proper degeneracy leads to single-step methods without parasitic modes, i.e. to non-uniform time step DVIs. This extension applies to second order accurate as well as first order schemes, and can be applied to adapt the time stepping to an error estimate.
This paper had no abstract originally. A second-order symplectic integration algorithm for guiding center motion is presented. The algorithm is based on the Poincare (mid-point) generating function.
In the present paper we consider the nonlinear interaction of high frequency intense electromagnetic (EM) beam with degenerate electron plasmas. In a slowly varying envelop approximation the beam dynamics is described by the couple of nonlinear equat
Upon combining Northrops picture of charged particle motion with modern liquid crystal theories, this paper provides a new description of guiding center dynamics (to lowest order). This new perspective is based on a rotation gauge field (gyrogauge) t
The difference between the guiding center phase-space Lagrangians derived in [J.W. Burby, J. Squire, and H. Qin, Phys. Plasmas {bf 20}, 072105 (2013)] and [F.I. Parra, and I. Calvo, Plasma Phys. Control. Fusion {bf 53}, 045001 (2011)] is due to a dif
We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of