ﻻ يوجد ملخص باللغة العربية
We analyze the post-Newtonian orbit of stars around a deformed Kerr black hole. The deformation we consider is a class of disformal transformations of a nontrivial Kerr solution in scalar-tensor theory which are labeled via the disformal parameter $D$. We study different limits of the disformal parameter, and compare the trajectories of stars orbiting a black hole to the case of the Kerr spacetime in general relativity, up to 2PN order. Our findings show that for generic nonzero $D$, the no-hair theorem of general relativity is violated, in the sense that the black holes quadrupole $Q$ is not determined by its mass $M$ and angular momentum $J$ through the relation $Q=-J^2/M$. Limiting values of $D$ provide examples of simple and exact noncircular metric solutions, whereas in a particular limit, where $1+D$ is small but finite, we obtain a leading correction to the Schwarzschild precession due to disformality. In this case, the disformal parameter is constrained using the recent measurement of the pericenter precession of the star S2 by the GRAVITY Collaboration.
If a lot of dark matter particles accumulate near the black hole, then the chances of detecting dark matter signals near a black hole are greatly increased. These effects may be observed by the Event Horizon Telescope (EHT), Tianqin project, Taiji pr
It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black-hole remnants of the order of the Planck-mass.
Ongoing observations in the strong-field regime are in optimal agreement with general relativity, although current errors still leave room for small deviations from Einsteins theory. Here we summarise our recent results on superradiance of scalar and
We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor representing the hidden symmetry is derived explicitly. The existence of separability structure implies a complete integrability of the geodesic
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features