ﻻ يوجد ملخص باللغة العربية
The design of recurrent neural networks (RNNs) to accurately process sequential inputs with long-time dependencies is very challenging on account of the exploding and vanishing gradient problem. To overcome this, we propose a novel RNN architecture which is based on a structure preserving discretization of a Hamiltonian system of second-order ordinary differential equations that models networks of oscillators. The resulting RNN is fast, invertible (in time), memory efficient and we derive rigorous bounds on the hidden state gradients to prove the mitigation of the exploding and vanishing gradient problem. A suite of experiments are presented to demonstrate that the proposed RNN provides state of the art performance on a variety of learning tasks with (very) long-time dependencies.
Circuits of biological neurons, such as in the functional parts of the brain can be modeled as networks of coupled oscillators. Inspired by the ability of these systems to express a rich set of outputs while keeping (gradients of) state variables bou
It is well known that it is challenging to train deep neural networks and recurrent neural networks for tasks that exhibit long term dependencies. The vanishing or exploding gradient problem is a well known issue associated with these challenges. One
Recurrent neural networks (RNNs) with continuous-time hidden states are a natural fit for modeling irregularly-sampled time series. These models, however, face difficulties when the input data possess long-term dependencies. We prove that similar to
Linear causal analysis is central to a wide range of important application spanning finance, the physical sciences, and engineering. Much of the existing literature in linear causal analysis operates in the time domain. Unfortunately, the direct appl
We introduce a new RL problem where the agent is required to generalize to a previously-unseen environment characterized by a subtask graph which describes a set of subtasks and their dependencies. Unlike existing hierarchical multitask RL approaches