ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Communications in Networked Systems

79   0   0.0 ( 0 )
 نشر من قبل Elif Uysal
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our vision for a departure from the established way of architecting and assessing communication networks, by incorporating the semantics of information for communications and control in networked systems. We define semantics of information, not as the meaning of the messages, but as their significance, possibly within a real time constraint, relative to the purpose of the data exchange. We argue that research efforts must focus on laying the theoretical foundations of a redesign of the entire process of information generation, transmission and usage in unison by developing: advanced semantic metrics for communications and control systems; an optimal sampling theory combining signal sparsity and semantics, for real-time prediction, reconstruction and control under communication constraints and delays; semantic compressed sensing techniques for decision making and inference directly in the compressed domain; semantic-aware data generation, channel coding, feedback, multiple and random access schemes that reduce the volume of data and the energy consumption, increasing the number of supportable devices.



قيم البحث

اقرأ أيضاً

The research efforts on cellular vehicle-to-everything (V2X) communications are gaining momentum with each passing year. It is considered as a paradigm-altering approach to connect a large number of vehicles with minimal cost of deployment and mainte nance. This article aims to further push the state-of-the-art of cellular V2X communications by providing an optimization framework for wireless charging, power allocation, and resource block assignment. Specifically, we design a network model where roadside objects use wireless power from RF signals of electric vehicles for charging and information processing. Moreover, due to the resource-constraint nature of cellular V2X, the power allocation and resource block assignment are performed to efficiently use the resources. The proposed optimization framework shows an improvement in terms of the overall energy efficiency of the network when compared with the baseline technique. The performance gains of the proposed solution clearly demonstrate its feasibility and utility for cellular V2X communications.
68 - Rahul Singh , P. R. Kumar 2020
We design adaptive controller (learning rule) for a networked control system (NCS) in which data packets containing control information are transmitted across a lossy wireless channel. We propose Upper Confidence Bounds for Networked Control Systems (UCB-NCS), a learning rule that maintains confidence intervals for the estimates of plant parameters $(A_{(star)},B_{(star)})$, and channel reliability $p_{(star)}$, and utilizes the principle of optimism in the face of uncertainty while making control decisions. We provide non-asymptotic performance guarantees for UCB-NCS by analyzing its regret, i.e., performance gap from the scenario when $(A_{(star)},B_{(star)},p_{(star)})$ are known to the controller. We show that with a high probability the regret can be upper-bounded as $tilde{O}left(Csqrt{T}right)$footnote{Here $tilde{O}$ hides logarithmic factors.}, where $T$ is the operating time horizon of the system, and $C$ is a problem dependent constant.
The orbital angular momentum (OAM) wireless communication technology is widely studied in recent literatures. But the atmospheric turbulence is rarely considered in analyzing the capacity of OAM-based millimeter wave (OAM-mmWave) communication system s. The OAM-mmWave propagated in the atmosphere environments is usually interfered by the atmospheric turbulence, resulting in the crosstalk among OAM channels,capacity degradation, etc. By taking into account the atmospheric turbulence effect, this paper proposes a new purity model and a new capacity model for the OAM-mmWave communication systems. Simulation results indicate that the OAM-mmWave propagation in the atmosphere environments is evidently interfered by atmospheric turbulence, where the capacity of the OAMmmWave communication systems decreases with the increase of the transmission frequency.
This paper considers uplink massive multiple-input multiple-output (MIMO) systems with lowresolution analog-to-digital converters (ADCs) over Rician fading channels. Maximum-ratio-combining (MRC) and zero-forcing (ZF) receivers are considered under t he assumption of perfect and imperfect channel state information (CSI). Low-resolution ADCs are considered for both data detection and channel estimation, and the resulting performance is analyzed. Asymptotic approximations of the spectrum efficiency (SE) for large systems are derived based on random matrix theory. With these results, we can provide insights into the trade-offs between the SE and the ADC resolution and study the influence of the Rician K-factors on the performance. It is shown that a large value of K-factors may lead to better performance and alleviate the influence of quantization noise on channel estimation. Moreover, we investigate the power scaling laws for both receivers under imperfect CSI and it shows that when the number of base station (BS) antennas is very large, without loss of SE performance, the transmission power can be scaled by the number of BS antennas for both receivers while the overall performance is limited by the resolution of ADCs. The asymptotic analysis is validated by numerical results. Besides, it is also shown that the SE gap between the two receivers is narrowed down when the K-factor is increased. We also show that ADCs with moderate resolutions lead to better energy efficiency (EE) than that with high-resolution or extremely low-resolution ADCs and using ZF receivers achieve higher EE as compared with the MRC receivers.
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D NN that corresponds to a regression model is trained with channel gains as the input and allocated transmit powers as the output. While the BS allocates the transmit power to the UEs to maximize rates for all UEs, there is an adversary that aims to minimize these rates. The adversary may be an external transmitter that aims to manipulate the inputs to the DNN by interfering with the pilot signals that are transmitted to measure the channel gain. Alternatively, the adversary may be a rogue UE that transmits fabricated channel estimates to the BS. In both cases, the adversary carefully crafts adversarial perturbations to manipulate the inputs to the DNN of the BS subject to an upper bound on the strengths of these perturbations. We consider the attacks targeted on a single UE or all UEs. We compare these attacks with a benchmark, where the adversary scales down the input to the DNN. We show that adversarial attacks are much more effective than the benchmark attack in terms of reducing the rate of communications. We also show that adversarial attacks are robust to the uncertainty at the adversary including the erroneous knowledge of channel gains and the potential errors in exercising the attacks exactly as specified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا