ﻻ يوجد ملخص باللغة العربية
Mixed-mode oscillations (MMOs) are complex oscillatory patterns in which large-amplitude relaxation oscillations (LAOs) alternate with small-amplitude oscillations (SAOs). MMOs are found in singularly perturbed systems of ordinary differential equations of slow-fast type, and are typically related to the presence of so-called folded singularities and the corresponding canard trajectories in such systems. Here, we introduce a canonical family of three-dimensional slow-fast systems that exhibit MMOs which are induced by relaxation-type dynamics, and which are hence based on a jump mechanism, rather than on a more standard canard mechanism. In particular, we establish a correspondence between that family and a class of associated one-dimensional piecewise affine maps (PAMs) which exhibit MMOs with the same signature. Finally, we give a preliminary classification of admissible mixed-mode signatures, and we illustrate our findings with numerical examples.
For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measu
Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml
In this paper, we first show that any nonlinear monotonic increasing contracting maps with one discontinuous point on a unit interval which has an unique periodic point with period $n$ conjugates to a piecewise linear contracting map which has period
We demonstrated experimentally canard induced mixed mode oscillations (MMO) in an excitable glow discharge plasma, and the results are validated through numerical solution of the FitzHugh Nagumo (FHN) model. When glow discharge plasma is perturbed by