Context. ALMA observations at 1.4 mm and 0.2 (750au) angular resolution of the Main core in the high-mass star forming region G31.41+0.31 have revealed a puzzling scenario: on the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic field; on the other hand, rotation and infall speed up toward the core center, where two massive embedded free-free continuum sources have been detected, pointing to an unstable core having undergone fragmentation. Aims. To establish whether the Main core is indeed monolithic or its homogeneous appearance is due to a combination of large dust opacity and low angular resolution, we carried out millimeter observations at higher angular resolution and different wavelengths. Methods. We carried out ALMA observations at 1.4 mm and 3.5 mm that achieved angular resolutions of 0.1(375 au) and 0.075 (280 au), respectively. VLA observations at 7 mm and 1.3 cm at even higher angular resolution, 0.05 (190 au) and 0.07 (260 au), respectively, were also carried out to better study the nature of the free-free continuum sources detected in the core. Results. The millimeter continuum emission of the Main core has been clearly resolved into at least four sources, A, B, C, and D, within 1, indicating that the core is not monolithic. The deconvolved radii of the dust emission of the sources, estimated at 3.5 mm, are 400-500au, their masses range from 15 to 26 Msun, and their number densities are several 1E9 cm-3. Sources A and B, located closer to the center of the core and separated by 750 au, are clearly associated with two free-free continuum sources, likely thermal radio jets, and are the brightest in the core. The spectral energy distribution of these two sources and their masses and sizes are similar and suggest a common origin.