ﻻ يوجد ملخص باللغة العربية
In order to balance the interests of integrated energy operator (IEO) and users, a novel Stackelberg game-based optimization framework is proposed for the optimal scheduling of integrated demand response (IDR)-enabled integrated energy systems with uncertain renewable generations, where the IEO acts as the leader who pursues the maximization of his profits by setting energy prices, while the users are the follower who adjusts energy consumption plans to minimize their energy costs. Taking into account the inherent uncertainty of renewable generations, the probabilistic spinning reserve is written in the form of a chance constraint; in addition, a district heating network model is built considering the characteristics of time delay and thermal attenuation by fully exploiting its potential, and the flexible thermal comfort requirements of users in IDR are considered by introducing a predicted mean vote (PMV) index. To solve the raised model, sequence operation theory is introduced to convert the chance constraint into its deterministic equivalent form, and thereby, the leader-follower Stackelberg game is tackled into a mixed-integer quadratic programming formulation through Karush-Kuhn-Tucker optimality conditions and is finally solved by the CPLEX optimizer. The results of two case studies demonstrate that the proposed Stackelberg game-based approach manages to achieve the Stackelberg equilibrium between IEO and users by the coordination of renewable generations and IDR. Furthermore, the study on a real integrated energy system in China verifies the applicability of the proposed approach for real-world applications.
The community integrated energy system (CIES) is an essential energy internet carrier that has recently been the focus of much attention. A scheduling model based on chance-constrained programming is proposed for integrated demand response (IDR)-enab
A community integrated energy system (CIES) with an electric vehicle charging station (EVCS) provides a new way for tackling growing concerns of energy efficiency and environmental pollution, it is a critical task to coordinate flexible demand respon
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely m
This paper proposes a dynamic game-based maintenance scheduling mechanism for the asset owners of the natural gas grid and the power grid by using a bilevel approach. In the upper level, the asset owners of the natural gas grid and the power grid sch
The potential of intelligent reflecting surfaces (IRSs) is investigated as a promising technique for enhancing the energy efficiency of wireless networks. Specifically, the IRS enables passive beamsteering by employing many low-cost individually cont