ﻻ يوجد ملخص باللغة العربية
A permutation whose any prefix has no more descents than ascents is called a ballot permutation. In this paper, we present a decomposition of ballot permutations that enables us to construct a bijection between ballot permutations and odd order permutations, which proves a set-valued extension of a conjecture due to Spiro using the statistic of peak values. This bijection also preserves the neighbors of the largest letter in permutations and thus resolves a refinement of Spiro s conjecture proposed by Wang and Zhang. Our decomposition can be extended to well-labelled positive paths, a class of generalized ballot permutations arising from polytope theory, that were enumerated by Bernardi, Duplantier and Nadeau. We will also investigate the enumerative aspect of ballot permutations avoiding a single pattern of length 3 and establish a connection between 213-avoiding ballot permutations and Gessel walks.
We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if $tau
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denot
A ballot permutation is a permutation $pi$ such that in any prefix of $pi$ the descent number is not more than the ascent number. By using a reversal concatenation map, we give a formula for the joint distribution (pk, des) of the peak and descent st
Given a set of permutations Pi, let S_n(Pi) denote the set of permutations in the symmetric group S_n that avoid every element of Pi in the sense of pattern avoidance. Given a subset S of {1,...,n-1}, let F_S be the fundamental quasisymmetric functio
Jelinek, Mansour, and Shattuck studied Wilf-equivalence among pairs of patterns of the form ${sigma,tau}$ where $sigma$ is a set partition of size $3$ with at least two blocks. They obtained an upper bound for the number of Wilf-equivalence classes f