ﻻ يوجد ملخص باللغة العربية
To address the challenging task of instance-aware human part parsing, a new bottom-up regime is proposed to learn category-level human semantic segmentation as well as multi-person pose estimation in a joint and end-to-end manner. It is a compact, efficient and powerful framework that exploits structural information over different human granularities and eases the difficulty of person partitioning. Specifically, a dense-to-sparse projection field, which allows explicitly associating dense human semantics with sparse keypoints, is learnt and progressively improved over the network feature pyramid for robustness. Then, the difficult pixel grouping problem is cast as an easier, multi-person joint assembling task. By formulating joint association as maximum-weight bipartite matching, a differentiable solution is developed to exploit projected gradient descent and Dykstras cyclic projection algorithm. This makes our method end-to-end trainable and allows back-propagating the grouping error to directly supervise multi-granularity human representation learning. This is distinguished from current bottom-up human parsers or pose estimators which require sophisticated post-processing or heuristic greedy algorithms. Experiments on three instance-aware human parsing datasets show that our model outperforms other bottom-up alternatives with much more efficient inference.
How to estimate the quality of the network output is an important issue, and currently there is no effective solution in the field of human parsing. In order to solve this problem, this work proposes a statistical method based on the output probabili
Existing alignment-based methods have to employ the pretrained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we
In semantic parsing for question-answering, it is often too expensive to collect gold parses or even gold answers as supervision signals. We propose to convert model outputs into a set of human-understandable statements which allow non-expert users t
In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause err
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need