ﻻ يوجد ملخص باللغة العربية
We consider stochastic optimization problems where a smooth (and potentially nonconvex) objective is to be minimized using a stochastic first-order oracle. These type of problems arise in many settings from simulation optimization to deep learning. We present Retrospective Approximation (RA) as a universal sequential sample-average approximation (SAA) paradigm where during each iteration $k$, a sample-path approximation problem is implicitly generated using an adapted sample size $M_k$, and solved (with prior solutions as warm start) to an adapted error tolerance $epsilon_k$, using a deterministic method such as the line search quasi-Newton method. The principal advantage of RA is that decouples optimization from stochastic approximation, allowing the direct adoption of existing deterministic algorithms without modification, thus mitigating the need to redesign algorithms for the stochastic context. A second advantage is the obvious manner in which RA lends itself to parallelization. We identify conditions on ${M_k, k geq 1}$ and ${epsilon_k, kgeq 1}$ that ensure almost sure convergence and convergence in $L_1$-norm, along with optimal iteration and work complexity rates. We illustrate the performance of RA with line-search quasi-Newton on an ill-conditioned least squares problem, as well as an image classification problem using a deep convolutional neural net.
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solvi
We introduce a class of stochastic algorithms for minimizing weakly convex functions over proximally smooth sets. As their main building blocks, the algorithms use simplified models of the objective function and the constraint set, along with a retra
Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG)
This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with a {color{black} functional or expectation} constraint on either decision variables or problem parameters. We first present a new stochastic
In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian inf