ﻻ يوجد ملخص باللغة العربية
We study convergence of 3D lattice sums via expanding spheres. It is well-known that, in contrast to summation via expanding cubes, the expanding spheres method may lead to formally divergent series (this will be so e.g. for the classical NaCl-Madelung constant). In the present paper we prove that these series remain convergent in Cesaro sense. For the case of second order Cesaro summation, we present an elementary proof of convergence and the proof for first order Cesaro summation is more involved and is based on the Riemann localization for multi-dimensional Fourier series.
We present a fast summation method for lattice sums of the type which arise when solving wave scattering problems with periodic boundary conditions. While there are a variety of effective algorithms in the literature for such calculations, the approa
The goal of this work is to formulate a systematical method for looking for the simple closed form or continued fraction representation of a class of rational series. As applications, we obtain the continued fraction representations for the alternati
We consider the class of multiple Fourier series associated with functions in the Dirichlet space of the polydisc. We prove that every such series is summable with respect to unrestricted rectangular partial sums, everywhere except for a set of zero
In the present paper we study the minimization of energy integrals on the sphere with a focus on an interesting clustering phenomenon: for certain types of potentials, optimal measures are discrete or are supported on small sets. In particular, we pr
We study distance spheres: the set of points lying at constant distance from a fixed arbitrary subset $K$ of $[0,1]^d$. We show that, away from the regions where $K$ is too dense and a set of small volume, we can decompose $[0,1]^d$ into a finite num