ﻻ يوجد ملخص باللغة العربية
The Newton--Hooke duality and its generalization to arbitrary power laws in classical, semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality is a symmetry of the action under a set of duality operations. The power dual symmetry is defined by invariance and reciprocity of the action in the form of Hamiltons characteristic function. We find that the power-law duality is basically a classical notion and breaks down at the level of angular quantization. We propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics. The energy-coupling exchange maps required as part of the duality operations that take one system to another lead to an energy formula that relates the new energy to the old energy. The transformation property of {the} Green function satisfying the radial Schrodinger equation yields a formula that relates the new Green function to the old one. The energy spectrum of the linear motion in a fractional power potential is semiclassically evaluated. We find a way to show the Coulomb--Hooke duality in the supersymmetric semiclassical action. We also study the confinement potential problem with the help of the dual structure of a two-term power potential.
The quantum-classical limits for quantum tomograms are studied and compared with the corresponding classical tomograms, using two different definitions for the limit. One is the Planck limit where $hbar to 0$ in all $hbar $-dependent physical observa
It is shown that Schrodingers equation and Borns rule are sufficient to ensure that the states of macroscopic collective coordinate subsystems are microscopically localized in phase space and that the localized state follows the classical trajectory
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
A history of Feynmans sum over histories is presented in brief. A focus is placed on the progress of path-integration techniques for exactly path-integrable problems in quantum mechanics.
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe