ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon Hall Viscosity in Magnetic Insulators

85   0   0.0 ( 0 )
 نشر من قبل Mengxing Ye
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Phonon Hall Viscosity is the leading term evincing time-reversal symmetry breaking in the low energy description of lattice phonons. It may generate phonon Berry curvature, and can be observed experimentally through the acoustic Faraday effect and thermal Hall transport. We present a systematic procedure to obtain the phonon Hall viscosity induced by phonon-magnon interactions in magnetic insulators under an external magnetic field. We obtain a general symmetry criterion that leads to non-zero Faraday rotation and Hall conductivity, and clarify the interplay between lattice symmetry, spin-orbit-coupling, external magnetic field and magnetic ordering. The symmetry analysis is verified through a microscopic calculation. By constructing the general symmetry-allowed effective action that describes the spin dynamics and spin-lattice coupling, and then integrating out the spin fluctuations, the leading order time-reversal breaking term in the phonon effective action, i.e. the phonon Hall viscosity, can be obtained. The analysis of the square lattice antiferromagnet for a cuprate Mott insulator, Sr$_2$CuO$_2$Cl$_2$, is presented explicitly, and the procedure described here can be readily generalized to other magnetic insulators.



قيم البحث

اقرأ أيضاً

Motivated by experimental observations, Samajdar et al. [Nature Physics 15, 1290 (2019)] have proposed that the insulating Neel state in the parent compounds of the cuprates is proximate to a quantum phase transition to a state in which Neel order co exists with semion topological order. We study the manner in which proximity to this transition can make the phonons chiral, by inducing a significant phonon Hall viscosity. We describe the spinon-phonon coupling in a lattice spinon model coupled to a strain field, and also using a general continuum theory constrained only by symmetry. We find a nonanalytic Hall viscosity across the transition, with a divergent second derivative at zero temperature.
136 - Haoyu Guo , Subir Sachdev 2021
Motivated by recent experiments on the phonon contribution to the thermal Hall effect in the cuprates, we present an analysis of chiral phonon transport. We assume the chiral behavior arises from a non-zero phonon Hall vicosity, which is likely induc ed by the coupling to electrons. Phonons with a non-zero phonon Hall viscosity have an intrinsic thermal Hall conductivity, but Chen et al. (Phys. Rev. Lett. 124, 167601 (2020)) have argued that a significantly larger thermal Hall conductivity can arise from an extrinsic contribution which is inversely proportional to the density of impurities. We solve the Boltzmann equation for phonon transport and compute the temperature ($T$) dependence of the thermal Hall conductivity originating from skew scattering off point-like impurities. We find that the dominant source for thermal Hall transport is an interference between impurity skew scattering channels with opposite parity. The thermal Hall conductivity $sim T^{d+2}$ at low $T$ in $d$ dimensions, and has a window of $T$-independent behavior for $T > T_{rm imp}$, where $T_{rm imp}$ is determined by the ratio of scattering potentials with opposite parity. We also consider the role of non-specular scattering off the sample boundary, and find that it leads to negligible corrections to thermal Hall transport at low $T$.
We address the theory of magnon-phonon interactions and compute the corresponding quasi-particle and transport lifetimes in magnetic insulators with focus on yttrium iron garnet at intermediate temperatures from anisotropy- and exchange-mediated magn on-phonon interactions, the latter being derived from the volume dependence of the Curie temperature. We find in general weak effects of phonon scattering on magnon transport and the Gilbert damping of the macrospin Kittel mode. The magnon transport lifetime differs from the quasi-particle lifetime at shorter wavelengths.
Quantum Hall matrix models are simple, solvable quantum mechanical systems which capture the physics of certain fractional quantum Hall states. Recently, it was shown that the Hall viscosity can be extracted from the matrix model for Laughlin states. Here we extend this calculation to the matrix models for a class of non-Abelian quantum Hall states. These states, which were previously introduced by Blok and Wen, arise from the conformal blocks of Wess-Zumino-Witten conformal field theory models. We show that the Hall viscosity computed from the matrix model coincides with a result of Read, in which the Hall viscosity is determined in terms of the weights of primary operators of an associated conformal field theory.
Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا