ترغب بنشر مسار تعليمي؟ اضغط هنا

$3$-Principalization over $S_3$-fields

52   0   0.0 ( 0 )
 نشر من قبل Siham Aouissi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $pequiv 1,(mathrm{mod},9)$ be a prime number and $zeta_3$ be a primitive cube root of unity. Then $mathrm{k}=mathbb{Q}(sqrt[3]{p},zeta_3)$ is a pure metacyclic field with group $mathrm{Gal}(mathrm{k}/mathbb{Q})simeq S_3$. In the case that $mathrm{k}$ possesses a $3$-class group $C_{mathrm{k},3}$ of type $(9,3)$, the capitulation of $3$-ideal classes of $mathrm{k}$ in its unramified cyclic cubic extensions is determined, and conclusions concerning the maximal unramified pro-$3$-extension $mathrm{k}_3^{(infty)}$ of $mathrm{k}$ are drawn.



قيم البحث

اقرأ أيضاً

152 - Sebastien Bosca 2009
We give the complete proof of a conjecture of Georges Gras which claims that, for any extension $K/k$ of number fields in which at least one infinite place is totally split, every ideal $I$ of $K$ principalizes in the compositum $Kk^{ab}$ of $K$ with the maximal abelian extension $k^{ab}$ of $k$
241 - Hel`ene Esnault 2007
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This sli ghtly improves our earlier result math/0405318: we needed there the model to be regular (but then our result was more general: we obtained a congruence for the number of points, and $K$ could be local of characteristic $p>0$).
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-a dic field, this is math/0405318, Theorem 1.1. If the model $sX$ is regular, one has a congruence $|sX(k)|equiv 1 $ modulo $|k|$ for the number of $k$-rational points 0704.1273, Theorem 1.1. The congruence is violated if one drops the regularity assumption.
Let K be a global field and f in K[X] be a polynomial. We present an efficient algorithm which factors f in polynomial time.
In this paper, we prove some extensions of recent results given by Shkredov and Shparlinski on multiple character sums for some general families of polynomials over prime fields. The energies of polynomials in two and three variables are our main ingredients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا