Extensions of a set partition obtained by imposing bounds on the size of the parts and the coloring of some of the elements are examined. Combinatorial properties and the generating functions of some counting sequences associated with these partitions are established. Connections with Riordan arrays are presented.
By introducing the notion of relative derangements of type $B$, also called signed relative derangements, which are defined in terms of signed permutations, we obtain a type $B$ analogue of the well-known relation between relative derangements and th
e classical derangements. While this fact can be proved by using the principle of inclusion and exclusion, we present a combinatorial interpretation with the aid of the intermediate structure of signed skew derangements.
In this paper, we give a type B analogue of the 1/k-Eulerian polynomials. Properties of this kind of polynomials, including combinatorial interpretations, recurrence relations and gamma-positivity are studied. In particular, we show that the 1/k-Eule
rian polynomials of type B are gamma-positive when $k>0$. Moreover, we obtain the corresponding results for derangements of type B. We show that a type B 1/k-derangement polynomials $d_n^B(x;k)$ are bi-gamma-positive when $kgeq 1/2$. In particular, we get a symmetric decomposition of $d_n^B(x;1/2)$ in terms of the classical derangement polynomials.
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maxi
mum clique number in graphs. It has been also applied in spectral graph theory. Estimating the Lagrangians of hypergraphs has been successfully applied in the course of studying the Turan densities of several hypergraphs as well. It is useful in practice if Motzkin-Straus type results hold for hypergraphs. However, the obvious generalization of Motzkin and Straus result to hypergraphs is false. We attempt to explore the relationship between the Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when the number of edges is in certain range. In this paper, we give some Motzkin-Straus type results for r-uniform hypergraphs. These results generalize and refine a result of Talbot in [19] and a result in [11].
An $r$-matching in a graph $G$ is a collection of edges in $G$ such that the distance between any two edges is at least $r$. A $2$-matching is also called an induced matching. In this paper, we estimate the maximum number of $r$-matchings in a tree o
f fixed order. We also prove that the $n$-vertex path has the maximum number of induced matchings among all $n$-vertex trees.
We prove the perfectness of Kirillov-Reshetikhin crystals $B^{r,s}$ for types $E_{6}^{(1)}$ and $E_{7}^{(1)}$ with $r$ being the minuscule node and $sgeq 1$ using the polytope model of KR crystals introduced by Jang.