Electromyography biofeedback system with visual and vibratory feedbacks designed for lower limb rehabilitation


الملخص بالإنكليزية

One of the main causes of long-term prosthetic abandonment is the lack of ownership over the prosthesis, caused mainly by the absence of sensory information regarding the lost limb. One strategy to overcome this problem is to provide alternative feedback mechanisms to convey information respective to the absent limb. To address this issue, we developed a Biofeedback system for the rehabilitation of transfemoral amputees, controlled via electromyographic activity from the leg muscles, that can provide real-time visual and/or vibratory feedback for the user. In this study, we tested this device with able-bodied individuals performing an adapted version of the clinical protocol. Our idea was to test the effectiveness of combining vibratory and visual feedbacks and how task difficulty affects overall performance. Our results show no negative interference combining both feedback modalities, and that performance peaked at the intermediate difficulty. These results provide powerful insights of what can be expected with the population of amputee people and will help in the final steps of protocol development. Our goal is to use this biofeedback system to engage another sensory modality in the process of spatial representation of a virtual leg, bypassing the lack of information associated with the disruption of afferent pathways following amputation.

تحميل البحث