ﻻ يوجد ملخص باللغة العربية
Photonic Quantum Computers provides several benefits over the discrete qubit-based paradigm of quantum computing. By using the power of continuous-variable computing we build an anomaly detection model to use on searches for New Physics. Our model uses Gaussian Boson Sampling, a $#$P-hard problem and thus not efficiently accessible to classical devices. This is used to create feature vectors from graph data, a natural format for representing data of high-energy collision events. A simple K-means clustering algorithm is used to provide a baseline method of classification. We then present a novel method of anomaly detection, combining the use of Gaussian Boson Sampling and a quantum extension to K-means known as Q-means. This is found to give equivalent results compared to the classical clustering version while also reducing the $mathcal{O}$ complexity, with respect to the samples feature-vector length, from $mathcal{O}(N)$ to $mathcal{O}(mbox{log}(N))$. Due to the speed of the sampling algorithm and the feasibility of near-term photonic quantum devices, anomaly detection at the trigger level can become practical in future LHC runs.
We describe the outcome of a data challenge conducted as part of the Dark Machines Initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims at detecting signals of new physics at the LHC using unsupervised machine
We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background,
Future upgrades to the LHC will pose considerable challenges for traditional particle track reconstruction methods. We investigate how artificial Neural Networks and Deep Learning could be used to complement existing algorithms to increase performanc
We reframe common tasks in jet physics in probabilistic terms, including jet reconstruction, Monte Carlo tuning, matrix element - parton shower matching for large jet multiplicity, and efficient event generation of jets in complex, signal-like region
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful perfo