ﻻ يوجد ملخص باللغة العربية
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
We incorporate Tensor-Product Representations within the Transformer in order to better support the explicit representation of relation structure. Our Tensor-Product Transformer (TP-Transformer) sets a new state of the art on the recently-introduced
We study the problem of generating arithmetic math word problems (MWPs) given a math equation that specifies the mathematical computation and a context that specifies the problem scenario. Existing approaches are prone to generating MWPs that are eit
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subro
This is a set of 288 questions written for a Moore-style course in Mathematical Logic. I have used these (or some variation) four times in a beginning graduate course. Topics covered are: propositional logic axioms of ZFC wellorderings and equi
Digital mathematical libraries (DMLs) such as arXiv, Numdam, and EuDML contain mainly documents from STEM fields, where mathematical formulae are often more important than text for understanding. Conventional information retrieval (IR) systems are un