ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Mean Teacher for Semi-supervised Chest X-ray Classification

147   0   0.0 ( 0 )
 نشر من قبل Fengbei Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The training of deep learning models generally requires a large amount of annotated data for effective convergence and generalisation. However, obtaining high-quality annotations is a laboursome and expensive process due to the need of expert radiologists for the labelling task. The study of semi-supervised learning in medical image analysis is then of crucial importance given that it is much less expensive to obtain unlabelled images than to acquire images labelled by expert radiologists.Essentially, semi-supervised methods leverage large sets of unlabelled data to enable better training convergence and generalisation than if we use only the small set of labelled images.In this paper, we propose the Self-supervised Mean Teacher for Semi-supervised (S$^2$MTS$^2$) learning that combines self-supervised mean-teacher pre-training with semi-supervised fine-tuning. The main innovation of S$^2$MTS$^2$ is the self-supervised mean-teacher pre-training based on the joint contrastive learning, which uses an infinite number of pairs of positive query and key features to improve the mean-teacher representation. The model is then fine-tuned using the exponential moving average teacher framework trained with semi-supervised learning.We validate S$^2$MTS$^2$ on the thorax disease multi-label classification problem from the dataset Chest X-ray14, where we show that it outperforms the previous SOTA semi-supervised learning methods by a large margin.



قيم البحث

اقرأ أيضاً

This paper focuses on Semi-Supervised Object Detection (SSOD). Knowledge Distillation (KD) has been widely used for semi-supervised image classification. However, adapting these methods for SSOD has the following obstacles. (1) The teacher model serv es a dual role as a teacher and a student, such that the teacher predictions on unlabeled images may be very close to those of student, which limits the upper-bound of the student. (2) The class imbalance issue in SSOD hinders an efficient knowledge transfer from teacher to student. To address these problems, we propose a novel method Temporal Self-Ensembling Teacher (TSE-T) for SSOD. Differently from previous KD based methods, we devise a temporally evolved teacher model. First, our teacher model ensembles its temporal predictions for unlabeled images under stochastic perturbations. Second, our teacher model ensembles its temporal model weights with the student model weights by an exponential moving average (EMA) which allows the teacher gradually learn from the student. These self-ensembling strategies increase data and model diversity, thus improving teacher predictions on unlabeled images. Finally, we use focal loss to formulate consistency regularization term to handle the data imbalance problem, which is a more efficient manner to utilize the useful information from unlabeled images than a simple hard-thresholding method which solely preserves confident predictions. Evaluated on the widely used VOC and COCO benchmarks, the mAP of our method has achieved 80.73% and 40.52% on the VOC2007 test set and the COCO2014 minval5k set respectively, which outperforms a strong fully-supervised detector by 2.37% and 1.49%. Furthermore, our method sets the new state-of-the-art in SSOD on VOC2007 test set which outperforms the baseline SSOD method by 1.44%. The source code of this work is publicly available at http://github.com/syangdong/tse-t.
Deep learning models achieve strong performance for radiology image classification, but their practical application is bottlenecked by the need for large labeled training datasets. Semi-supervised learning (SSL) approaches leverage small labeled data sets alongside larger unlabeled datasets and offer potential for reducing labeling cost. In this work, we introduce NoTeacher, a novel consistency-based SSL framework which incorporates probabilistic graphical models. Unlike Mean Teacher which maintains a teacher network updated via a temporal ensemble, NoTeacher employs two independent networks, thereby eliminating the need for a teacher network. We demonstrate how NoTeacher can be customized to handle a range of challenges in radiology image classification. Specifically, we describe adaptations for scenarios with 2D and 3D inputs, uni and multi-label classification, and class distribution mismatch between labeled and unlabeled portions of the training data. In realistic empirical evaluations on three public benchmark datasets spanning the workhorse modalities of radiology (X-Ray, CT, MRI), we show that NoTeacher achieves over 90-95% of the fully supervised AUROC with less than 5-15% labeling budget. Further, NoTeacher outperforms established SSL methods with minimal hyperparameter tuning, and has implications as a principled and practical option for semisupervised learning in radiology applications.
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires more annotation effort. In this work, we revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD. To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Together with a class-balance loss to downweight overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-the-art methods by significant margins on COCO-standard, COCO-additional, and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP improvements against state-of-the-art method when using 1% of labeled data on MS-COCO, achieves around 10 mAP improvements against the supervised baseline when using only 0.5, 1, 2% of labeled data on MS-COCO.
Affective Behavior Analysis is an important part in human-computer interaction. Existing multi-task affective behavior recognition methods suffer from the problem of incomplete labeled datasets. To tackle this problem, this paper presents a semi-supe rvised model with a mean teacher framework to leverage additional unlabeled data. To be specific, a multi-task model is proposed to learn three different kinds of facial affective representations simultaneously. After that, the proposed model is assigned to be student and teacher networks. When training with unlabeled data, the teacher network is employed to predict pseudo labels for student network training, which allows it to learn from unlabeled data. Experimental results showed that our proposed method achieved much better performance than baseline model and ranked 4th in both competition track 1 and track 2, and 6th in track 3, which verifies that the proposed network can effectively learn from incomplete datasets.
Deep learning has achieved promising segmentation performance on 3D left atrium MR images. However, annotations for segmentation tasks are expensive, costly and difficult to obtain. In this paper, we introduce a novel hierarchical consistency regular ized mean teacher framework for 3D left atrium segmentation. In each iteration, the student model is optimized by multi-scale deep supervision and hierarchical consistency regularization, concurrently. Extensive experiments have shown that our method achieves competitive performance as compared with full annotation, outperforming other state-of-the-art semi-supervised segmentation methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا