ﻻ يوجد ملخص باللغة العربية
This paper deals with linear algebraic equations where the global coefficient matrix and constant vector are given respectively, by the summation of the coefficient matrices and constant vectors of the individual agents. Our approach is based on reformulating the original problem as an unconstrained optimization. Based on this exact reformulation, we first provide a gradient-based, centralized algorithm which serves as a reference for the ensuing design of distributed algorithms. We propose two sets of exponentially stable continuous-time distributed algorithms that do not require the individual agent matrices to be invertible, and are based on estimating non-distributed terms in the centralized algorithm using dynamic average consensus. The first algorithm works for time-varying weight-balanced directed networks, and the second algorithm works for general directed networks for which the communication graphs might not be balanced. Numerical simulations illustrate our results.
We present a method to over-approximate reachable tubes over compact time-intervals, for linear continuous-time, time-varying control systems whose initial states and inputs are subject to compact convex uncertainty. The method uses numerical approxi
In decentralized optimization, multiple nodes in a network collaborate to minimize the sum of their local loss functions. The information exchange between nodes required for this task, is often limited by network connectivity. We consider a setting i
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon es
This paper aims at addressing distributed averaging problems for signed networks in the presence of general directed topologies that are represented by signed digraphs. A new class of improved Laplacian potential functions is proposed by presenting t
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic