Routing algorithms as tools for integrating social distancing with emergency evacuation


الملخص بالإنكليزية

We explore the implications of integrating social distancing with emergency evacuation, as would be expected when a hurricane approaches a city during the COVID-19 pandemic. Specifically, we compare DNN (Deep Neural Network)-based and non-DNN methods for generating evacuation strategies that minimize evacuation time while allowing for social distancing in emergency vehicles. A central question is whether a DNN-based method provides sufficient extra routing efficiency to accommodate increased social distancing in a time-constrained evacuation operation. We describe the problem as a Capacitated Vehicle Routing Problem and solve it using a non-DNN solution (Sweep Algorithm) and a DNN-based solution (Deep Reinforcement Learning). The DNN-based solution can provide decision-makers with more efficient routing than the typical non-DNN routing solution. However, it does not come close to compensating for the extra time required for social distancing, and its advantage disappears as the emergency vehicle capacity approaches the number of people per household.

تحميل البحث