ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond field-driven on-chip unidirectional electronic currents in nonadiabatic tunnelling regime

150   0   0.0 ( 0 )
 نشر من قبل Ihar Babushkin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, asymmetric plasmonic nanojunctions [Karnetzky et. al., Nature Comm. 2471, 9 (2018)] have shown promise as on-chip electronic devices to convert femtosecond optical pulses to current bursts, with a bandwidth of multi-terahertz scale, although yet at low temperatures and pressures. Such nanoscale devices are of great interest for novel ultrafast electronics and opto-electronic applications. Here, we operate the device in air and at room temperature, revealing the mechanisms of photoemission from plasmonic nanojunctions, and the fundamental limitations on the speed of optical-to-electronic conversion. Inter-cycle interference of coherent electronic wavepackets results in a complex energy electron distribution and birth of multiphoton effects. This energy structure, as well as reshaping of the wavepackets during their propagation from one tip to the other, determine the ultrafast dynamics of the current. We show that, up to some level of approximation, the electron flight time is well-determined by the mean ponderomotive velocity in the driving field.



قيم البحث

اقرأ أيضاً

Advances in nanotechnology provide techniques for the realisation of integrated quantum-optical circuits for on-chip quantum information processing(QIP). The indistinguishable single photons, required for such devices can be generated by parametric d own-conversion, or from quantum emitters such as colour centres and quantum dots(QDs). Among these, semiconductor QDs offer distinctive capabilities including on-demand operation, coherent control, frequency tuning and compatibility with semiconductor nanotechnology. Moreover, the coherence of QD photons can be significantly enhanced in resonance fluorescence(RF) approaching at its best the coherence of the excitation laser. However, the implementation of QD RF in scalable on-chip geometries remains challenging due to the need to suppress stray laser photons. Here we report on-chip QD RF coupled into a single-mode waveguide with negligible resonant laser background and show that the coherence is enhanced compared to off-resonant excitation. The results pave the way to a novel class of integrated quantum-optical devices for on-chip QIP with embedded resonantly-driven quantum emitters.
The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric fiel d that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an un-biased junction.
Nanomechanical circuits for transverse acoustic waves promise to enable new approaches to computing, precision biochemical sensing and many other applications. However, progress is hampered by the lack of precise control of the coupling between nanom echanical elements. Here, we demonstrate virtual-phonon coupling between transverse mechanical elements, exploiting tunnelling through a zero-mode acoustic barrier. This allows the construction of large-scale nanomechanical circuits on a silicon chip, for which we develop a new scalable fabrication technique. As example applications, we build mode-selective acoustic mirrors with controllable reflectivity and demonstrate acoustic spatial mode filtering. Our work paves the way towards applications such as fully nanomechanical computer processors and distributed nanomechanical sensors, and to explore the rich landscape of nonlinear nanomechanical dynamics.
We observe that the illumination of unbiased graphene in the quantum Hall regime with polarized terahertz laser radiation results in a direct edge current. This photocurrent is caused by an imbalance of persistent edge currents, which are driven out of thermal equilibrium by indirect transitions within the chiral edge channel. The direction of the edge photocurrent is determined by the polarity of the external magnetic field, while its magnitude depends on the radiation polarization. The microscopic theory developed in this paper describes well the experimental data.
We theoretically study the interaction of an ultrafast intense linearly polarized optical pulse with monolayers of transition metal dichalcogenides (TMDCs). Such a strong pulse redistributes electrons between the bands and generates femtosecond curre nts during the pulse. Due to the large bandwidth of the incident pulse, this process is completely off-resonant. While in TMDCs the time-reversal symmetry is conserved, the inversion symmetry is broken and these monolayers have the axial symmetry along armchair direction but not along the zigzag one. Therefore, the pulse polarized along the asymmetric direction of TMDC monolayer generates both longitudinal, i.e., along the direction of polarization, and transverse, i.e., in the perpendicular direction, currents. Such currents result in charge transfer through the system. We study different TMDC materials and show how the femtosecond transport in TMDC monolayers depend on their parameters, such as lattice constant and bandgap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا