ﻻ يوجد ملخص باللغة العربية
Magnetic fields are ubiquitous and essential in star formation. In particular, their role in regulating formation of stars across diverse environments like HII regions needs to be well understood. In this study, we present magnetic field properties towards the S235 complex using near-infrared (NIR) $H$-band polarimetric observations, obtained with the Mimir and POLICAN instruments. We selected 375 background stars in the field through combination of Gaia distances and extinctions from NIR colors. The plane-of-sky (POS) magnetic field orientations inferred from starlight polarization angles reveal a curved morphology tracing the spherical shell of the HII region. The large-scale magnetic field traced by Planck is parallel to the Galactic plane. We identified 11 dense clumps using $1.1,mathrm{mm}$ dust emission, with masses between $33-525,rm M_odot$. The clump averaged POS magnetic field strengths were estimated to be between $36-121,mathrm{mu G}$, with a mean of ${sim}65,mathrm{mu G}$. The mass-to-flux ratios for the clumps are found to be sub-critical with turbulent Alfv{e}n Mach numbers less than 1, indicating a strongly magnetized region. The clumps show scaling of magnetic field strength vs density with a power-law index of $0.52pm0.07$, similar to ambipolar diffusion models. Our results indicate the S235 complex is a region where stellar feedback triggers new stars and the magnetic fields regulate the rate of new star formation.
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol
We present a multiwavelength (ultraviolet, infrared, optical and CO) study of a set of luminous HII regions in M33: NGC 604, NGC 595, NGC 592, NGC 588 and IC131. We study the emission distribution in the interiors of the HII regions to investigate th
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is d
Context: The importance of magnetic fields at the onset of star formation related to the early fragmentation and collapse processes is largely unexplored today. Aims: We want to understand the magnetic field properties at the earliest evolutionary st
We investigate the formation and evolution of giant molecular clouds (GMCs) by the collision of convergent warm neutral medium (WNM) streams in the interstellar medium, in the presence of magnetic fields and ambipolar diffusion (AD), focusing on the