ﻻ يوجد ملخص باللغة العربية
Spectrum denoising is an important procedure for large-scale spectroscopical surveys. This work proposes a novel stellar spectrum denoising method based on deep Bayesian modeling. The construction of our model includes a prior distribution for each stellar subclass, a spectrum generator and a flow-based noise model. Our method takes into account the noise correlation structure, and it is not susceptible to strong sky emission lines and cosmic rays. Moreover, it is able to naturally handle spectra with missing flux values without ad-hoc imputation. The proposed method is evaluated on real stellar spectra from the Sloan Digital Sky Survey (SDSS) with a comprehensive list of common stellar subclasses and compared to the standard denoising auto-encoder. Our denoising method demonstrates superior performance to the standard denoising auto-encoder, in respect of denoising quality and missing flux imputation. It may be potentially helpful in improving the accuracy of the classification and physical parameter measurement of stars when applying our method during data preprocessing.
When applying the foreground removal methods to uncover the faint cosmological signal from the epoch of reionization (EoR), the foreground spectra are assumed to be smooth. However, this assumption can be seriously violated in practice since the unre
The feature map obtained from the denoising autoencoder (DAE) is investigated by determining transportation dynamics of the DAE, which is a cornerstone for deep learning. Despite the rapid development in its application, deep neural networks remain a
We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling code described in earlier papers in
We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal mod
A new method for analyzing the returns of the custom-made micro-LIDAR system, which is operated along with the two MAGIC telescopes, allows to apply atmospheric corrections in the MAGIC data analysis chain. Such corrections make it possible to extend