ﻻ يوجد ملخص باللغة العربية
Integrable or near-integrable magnetic fields are prominent in the design of plasma confinement devices. Such a field is characterized by the existence of a singular foliation consisting entirely of invariant submanifolds. A regular leaf, known as a flux surface,of this foliation must be diffeomorphic to the two-torus. In a neighborhood of a flux surface, it is known that the magnetic field admits several exact, smooth normal forms in which the field lines are straight. However, these normal forms break down near singular leaves including elliptic and hyperbolic magnetic axes. In this paper, the existence of exact, smooth normal forms for integrable magnetic fields near elliptic and hyperbolic magnetic axes is established. In the elliptic case, smooth near-axis Hamada and Boozer coordinates are defined and constructed. Ultimately, these results establish previously conjectured smoothness properties for smooth solutions of the magnetohydrodynamic equilibrium equations. The key arguments are a consequence of a geometric reframing of integrability and magnetic fields; that they are presymplectic systems.
A formal series transformation to Birkhoff-Gustavson normal form is obtained for toroidal magnetic field configurations in the neighborhood of a magnetic axis. Bishops rotation-minimizing coordinates are used to obtain a local orthogonal frame near t
Birkhoff normal forms are commonly used in order to ensure the so called effective stability in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be b
We consider normal forms in `magnetic bottle type Hamiltonians of the form $H=frac{1}{2}(rho^2_rho+omega^2_1rho^2) +frac{1}{2}p^2_z+hot$ (second frequency $omega_2$ equal to zero in the lowest order). Our main results are: i) a novel method to constr
We give a sufficient condition for quantising integrable systems.
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with p