ﻻ يوجد ملخص باللغة العربية
This paper develops an efficient distributed inference algorithm, which is robust against a moderate fraction of Byzantine nodes, namely arbitrary and possibly adversarial machines in a distributed learning system. In robust statistics, the median-of-means (MOM) has been a popular approach to hedge against Byzantine failures due to its ease of implementation and computational efficiency. However, the MOM estimator has the shortcoming in terms of statistical efficiency. The first main contribution of the paper is to propose a variance reduced median-of-means (VRMOM) estimator, which improves the statistical efficiency over the vanilla MOM estimator and is computationally as efficient as the MOM. Based on the proposed VRMOM estimator, we develop a general distributed inference algorithm that is robust against Byzantine failures. Theoretically, our distributed algorithm achieves a fast convergence rate with only a constant number of rounds of communications. We also provide the asymptotic normality result for the purpose of statistical inference. To the best of our knowledge, this is the first normality result in the setting of Byzantine-robust distributed learning. The simulation results are also presented to illustrate the effectiveness of our method.
The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. This point of view covers the stochastic gradient descent method,
Stochastic Gradient Descent has been widely studied with classification accuracy as a performance measure. However, these stochastic algorithms cannot be directly used when non-decomposable pairwise performance measures are used such as Area under th
Communication efficiency and robustness are two major issues in modern distributed learning framework. This is due to the practical situations where some computing nodes may have limited communication power or may behave adversarial behaviors. To add
Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification (posterior credible sets). We investigate Bayesian inference for avera