ﻻ يوجد ملخص باللغة العربية
The existing face recognition datasets usually lack occlusion samples, which hinders the development of face recognition. Especially during the COVID-19 coronavirus epidemic, wearing a mask has become an effective means of preventing the virus spread. Traditional CNN-based face recognition models trained on existing datasets are almost ineffective for heavy occlusion. To this end, we pioneer a simulated occlusion face recognition dataset. In particular, we first collect a variety of glasses and masks as occlusion, and randomly combine the occlusion attributes (occlusion objects, textures,and colors) to achieve a large number of more realistic occlusion types. We then cover them in the proper position of the face image with the normal occlusion habit. Furthermore, we reasonably combine original normal face images and occluded face images to form our final dataset, termed as Webface-OCC. It covers 804,704 face images of 10,575 subjects, with diverse occlusion types to ensure its diversity and stability. Extensive experiments on public datasets show that the ArcFace retrained by our dataset significantly outperforms the state-of-the-arts. Webface-OCC is available at https://github.com/Baojin-Huang/Webface-OCC.
To minimize the effects of age variation in face recognition, previous work either extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features, called age-invariant face recognition (AIFR
In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation pro
Understanding movies and their structural patterns is a crucial task to decode the craft of video editing. While previous works have developed tools for general analysis such as detecting characters or recognizing cinematography properties at the sho
Recently regression analysis becomes a popular tool for face recognition. The existing regression methods all use the one-dimensional pixel-based error model, which characterizes the representation error pixel by pixel individually and thus neglects
Face recognition performance improves rapidly with the recent deep learning technique developing and underlying large training dataset accumulating. In this paper, we report our observations on how big data impacts the recognition performance. Accord