ترغب بنشر مسار تعليمي؟ اضغط هنا

Notes on cluster algebras and some all-loop Feynman integrals

190   0   0.0 ( 0 )
 نشر من قبل Song He
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and (seven-point) double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $D_2simeq A_1^2$, we show that penta-box ladder has an alphabet of $D_3simeq A_3$ and provide strong evidence that the alphabet of double-penta ladder can be identified with a $D_4$ cluster algebra. We relate the symbol letters to the ${bf u}$ variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop ${rm d}log$ representation, which allows us to predict higher-loop alphabet recursively; by applying such recursions to six-dimensional hexagon integrals, we also find $D_5$ and $D_6$ cluster functions for the two-mass-easy and three-mass-easy case, respectively.



قيم البحث

اقرأ أيضاً

We initiate the study of cluster algebras in Feynman integrals in dimensional regularization. We provide evidence that four-point Feynman integrals with one off-shell leg are described by a $C_{2}$ cluster algebra, and we find cluster adjacency relat ions that restrict the allowed function space. By embedding $C_{2}$ inside the $A_3$ cluster algebra, we identify these adjacencies with the extended Steinmann relations for six-particle massless scattering. The cluster algebra connection we find restricts the functions space for vector boson or Higgs plus jet amplitudes, and for form factors recently considered in $mathcal{N}=4$ super Yang-Mills. We explain general procedures for studying relationships between alphabets of generalized polylogarithmic functions and cluster algebras, and use them to provide various identifications of one-loop alphabets with cluster algebras. In particular, we show how one can obtain one-loop alphabets for five-particle scattering from a recently discussed dual conformal eight-particle alphabet related to the $G(4,8)$ cluster algebra.
We comment on the status of Steinmann-like constraints, i.e. all-loop constraints on consecutive entries of the symbol of scattering amplitudes and Feynman integrals in planar ${cal N}=4$ super-Yang-Mills, which have been crucial for the recent progr ess of the bootstrap program. Based on physical discontinuities and Steinmann relations, we first summarize all possible double discontinuities (or first-two-entries) for (the symbol of) amplitudes and integrals in terms of dilogarithms, generalizing well-known results for $n=6,7$ to all multiplicities. As our main result, we find that extended-Steinmann relations hold for all finite integrals that we have checked, including various ladder integrals, generic double-pentagon integrals, as well as finite components of two-loop NMHV amplitudes for any $n$; with suitable normalization such as minimal subtraction, they hold for $n=8$ MHV amplitudes at three loops. We find interesting cancellation between contributions from rational and algebraic letters, and for the former we have also tested cluster-adjacency conditions using the so-called Sklyanin brackets. Finally, we propose a list of possible last-two-entries for $n$-point MHV amplitudes derived from $bar{Q}$ equations, which can be used to reduce the space of functions for higher-point MHV amplitudes.
We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) $G_+(4,n)/T$ fo r the $n$-particle massless kinematics. For one-, two-, three-mass-easy hexagon kinematics with $n=7,8,9$, we find finite cluster algebras $D_4$, $D_5$ and $D_6$ respectively, in accordance with previous result on alphabets of these integrals. As the main example, we consider hexagon kinematics with two massive corners on opposite sides and find a truncated affine $D_4$ cluster algebra whose polytopal realization is a co-dimension 4 boundary of that of $G_+(4,8)/T$ with 39 facets; the normal vectors for 38 of them correspond to g-vectors and the remaining one gives a limit ray, which yields an alphabet of $38$ rational letters and $5$ algebraic ones with the unique four-mass-box square root. We construct the space of integrable symbols with this alphabet and physical first-entry conditions, whose dimension can be reduced using conditions from a truncated version of cluster adjacency. Already at weight $4$, by imposing last-entry conditions inspired by the $n=8$ double-pentagon integral, we are able to uniquely determine an integrable symbol that gives the algebraic part of the most generic double-pentagon integral. Finally, we locate in the space the $n=8$ double-pentagon ladder integrals up to four loops using differential equations derived from Wilson-loop $dlog$ forms, and we find a remarkable pattern about the appearance of algebraic letters.
187 - Jochem Fleischer 2010
We present a new algorithm for the reduction of one-loop emph{tensor} Feynman integrals with $nleq 4$ external legs to emph{scalar} Feynman integrals $I_n^D$ with $n=3,4$ legs in $D$ dimensions, where $D=d+2l$ with integer $l geq 0$ and generic dimen sion $d=4-2epsilon$, thus avoiding the appearance of inverse Gram determinants $()_4$. As long as $()_4 eq 0$, the integrals $I_{3,4}^D$ with $D>d$ may be further expressed by the usual dimensionally regularized scalar functions $I_{2,3,4}^d$. The integrals $I_{4}^D$ are known at $()_4 equiv 0$, so that we may extend the numerics to small, non-vanishing $()_4$ by applying a dimensional recurrence relation. A numerical example is worked out. Together with a recursive reduction of 6- and 5-point functions, derived earlier, the calculational scheme allows a stabilized reduction of $n$-point functions with $nleq 6$ at arbitrary phase space points. The algorithm is worked out explicitely for tensors of rank $Rleq n$.
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To sol ve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا