ﻻ يوجد ملخص باللغة العربية
We derive an effective field theory for a type-II fracton starting from the Haah code on the lattice. The effective topological theory is not given exclusively in terms of an action; it must be supplemented with a condition that selects physical states. Without the constraint, the action only describes a type-I fracton. The constraint emerges from a condition that cube operators multiply to the identity, and it cannot be consistently implemented in the continuum theory at the operator level, but only in a weaker form, in terms of matrix elements of physical states. Informed by these studies and starting from the opposite end, i.e., the continuum, we discuss a Chern-Simons-like theory that does not need a constraint or projector, and yet has no mobile excitations. Whether this continuum theory admits a lattice counterpart remains unanswered.
We offer a fractonic perspective on a familiar observation -- a flat sheet of paper can be folded only along a straight line if one wants to avoid the creation of additional creases or tears. Our core underlying technical result is the establishment
Recent work has shown that two seemingly different physical mechanisms, namely fracton behavior and confinement, can give rise to non-ergodicity in one-dimensional quantum many-body systems. In this work, we demonstrate an intrinsic link between thes
Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in rea
We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory.
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that