ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven quantum many-body systems and out-of-equilibrium topology

179   0   0.0 ( 0 )
 نشر من قبل Diptiman Sen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review we present some of the work done in India in the area of driven and out-of-equilibrium systems with topological phases. After presenting some well-known examples of topological systems in one and two dimensions, we discuss the effects of periodic driving in some of them. We discuss the unitary as well as the non-unitary dynamical preparation of topologically non-trivial states in one and two dimensional systems. We then discuss the effects of Majorana end modes on transport through a Kitaev chain and a junction of three Kitaev chains. Transport through the surface states of a three-dimensional topological insulator is discussed. The effects of hybridization between the top and bottom surfaces and the application of electromagnetic radiation on a strip-like region on the top surface are described. Two unusual topological systems are mentioned briefly, namely, a spin system on a kagome lattice and a Josephson junction of three superconducting wires. We have also included a pedagogical discussion on topology and topological invariants in the appendices, where the connection between topological properties and the intrinsic geometry of quantum states is also elucidated.



قيم البحث

اقرأ أيضاً

327 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance s of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be acc ounted for by considering correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly { accessible to experiments when correlating measurable properties}. When non-vanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite emph{quantum coherence length}, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system -- as it remains finite even when the correlation length of the system diverges at finite temperature -- and it unveils the unique spatial structure of quantum correlations.
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of th e system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect, as manifested by the hole-burning shape of the electron paramagnetic resonance spectrum. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4 - 5 Kelvin.
175 - A.Cuccoli , A.Fubini , V.Tognetti 1999
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational approach by the Feynman-Jensen inequality with a suitable quadratic nonlocal trial action. A low-coupling approximation permits to get manageable PQSCHA expressions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipation. The application of the PQSCHA to a quantum phi4-chain with Drude-like dissipation shows nontrivial effects of dissipation, depending upon its strength and bandwidth.
التعليقات (0)
لا يوجد تعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا