ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a direct Eulerian generalized Riemann problem (GRP) scheme for a blood flow model in arteries. It is an extension of the Eulerian GRP scheme, which is developed by Ben-Artzi, et. al. in J. Comput. Phys., 218(2006). By using the Riemann invariants, we diagonalize the blood flow system into a weakly coupled system, which is used to resolve rarefaction wave. We also use Rankine-Hugoniot condition to resolve the local GRP formulation. We pay special attention to the acoustic case as well as the sonic case. The extension to the two dimensional case is carefully obtained by using the dimensional splitting technique. We test that the derived GRP scheme is second order accuracy.
The paper proposes a second-order accurate direct Eulerian generalized Riemann problem (GRP) scheme for the radiation hydrodynamical equations (RHE) in the zero diffusion limit. The difficulty comes from no explicit expression of the flux in terms of
A new two-dimensional model for blood flows in arteries with arbitrary cross sections is derived. The model consists of a system of balance laws for conservation of mass and balance of momentum in the axial and angular directions. The equations are d
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simp
We performed numerical simulations of blood flow in arteries with a variable stiffness and cross-section at rest using a finite volume method coupled with a hydrostatic reconstruction of the variables at the interface of each mesh cell. The method wa
We propose an integrated electromechanical model of the human heart, with focus on the left ventricle, wherein biophysically detailed models describe the different physical phenomena concurring to the cardiac function. We model the subcellular genera