ﻻ يوجد ملخص باللغة العربية
Hearing-impaired listeners usually have troubles attending target talker in multi-talker scenes, even with hearing aids (HAs). The problem can be solved with eye-gaze steering HAs, which requires listeners eye-gazing on the target. In a situation where head rotates, eye-gaze is subject to both behaviors of saccade and head rotation. However, existing methods of eye-gaze estimation did not work reliably, since the listeners strategy of eye-gaze varies and measurements of the two behaviors were not properly combined. Besides, existing methods were based on hand-craft features, which could overlook some important information. In this paper, a head-fixed and a head-free experiments were conducted. We used horizontal electrooculography (HEOG) and neck electromyography (NEMG), which separately measured saccade and head rotation to commonly estimate eye-gaze. Besides traditional classifier and hand-craft features, deep neural networks (DNN) were introduced to automatically extract features from intact waveforms. Evaluation results showed that when the input was HEOG with inertial measurement unit, the best performance of our proposed DNN classifiers achieved 93.3%; and when HEOG was with NEMG together, the accuracy reached 72.6%, higher than that with HEOG (about 71.0%) or NEMG (about 35.7%) alone. These results indicated the feasibility to estimate eye-gaze with HEOG and NEMG.
The world is moving towards faster data transformation with more efficient localization of a user being the preliminary requirement. This work investigates the use of a deep learning technique for wireless localization, considering both millimeter-wa
This paper presents a novel compressed sensing (CS) approach to high dimensional wireless channel estimation by optimizing the input to a deep generative network. Channel estimation using generative networks relies on the assumption that the reconstr
Using mel-spectrograms over conventional MFCCs features, we assess the abilities of convolutional neural networks to accurately recognize and classify emotions from speech data. We introduce FSER, a speech emotion recognition model trained on four va
We propose an image-classification method to predict the perceived-relevance of text documents from eye-movements. An eye-tracking study was conducted where participants read short news articles, and rated them as relevant or irrelevant for answering
Estimating human gaze from natural eye images only is a challenging task. Gaze direction can be defined by the pupil- and the eyeball center where the latter is unobservable in 2D images. Hence, achieving highly accurate gaze estimates is an ill-pose