ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the Moon

110   0   0.0 ( 0 )
 نشر من قبل Raluca Rufu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Earth-Moon system is unusual in several respects. The Moon is roughly 1/4 the radius of the Earth - a larger satellite-to-planet size ratio than all known satellites other than Plutos Charon. The Moon has a tiny core, perhaps with only ~1% of its mass, in contrast to Earth whose core contains nearly 30% of its mass. The Earth-Moon system has a high total angular momentum, implying a rapidly spinning Earth when the Moon formed. In addition, the early Moon was hot and at least partially molten with a deep magma ocean. Identification of a model for lunar origin that can satisfactorily explain all of these features has been the focus of decades of research.



قيم البحث

اقرأ أيضاً

The hypothesis of lunar origin by a single giant impact can explain some aspects of the Earth-Moon system. However, it is difficult to reconcile giant impact models with the compositional similarity of the Earth and Moon without violating angular mom entum constraints. Furthermore, successful giant impact scenarios require very specific conditions such that they have a low probability of occurring. Here we present numerical simulations suggesting that the Moon could instead be the product of a succession of a variety of smaller collisions. In this scenario, each collision forms a debris disk around the proto-Earth that then accretes to form a moonlet. The moonlets tidally advance outward, and may coalesce to form the Moon. We find that sub-lunar moonlets are a common result of impacts expected onto the proto-Earth in the early solar system and find that the planetary rotation is limited by impact angular momentum drain. We conclude that, assuming efficient merger of moonlets, a multiple impact scenario can account for the formation of the Earth-Moon system with its present properties.
The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earths mantle preserves ancient (or primordial) heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earths mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.
Returning humans to the Moon presents an unprecedented opportunity to determine the origin of volatiles stored in the permanently shaded regions (PSRs), which trace the history of lunar volcanic activity, solar wind surface chemistry, and volatile de livery to the Earth and Moon through impacts of comets, asteroids, and micrometeoroids. So far, the source of the volatiles sampled by the Lunar Crater Observation and Sensing Satellite (LCROSS) plume (Colaprete et al. 2010; Gladstone et al. 2010) has remained undetermined. We show here that the source could not be volcanic outgassing and the composition is best explained by cometary impacts. Ruling out a volcanic source means that volatiles in the top 1-3 meters of the Cabeus PSR regolith may be younger than the latest volcanic outgassing event (~1 billion years ago; Gya) (Needham et al. 2017).
Micrometeoroids (cosmic dust with size between a few $mu$m and $sim$1 mm) dominate the annual extraterrestrial mass flux to the Earth. We investigate the range of physical processes occurring when micrometeoroids traverse the atmosphere. We compute t he time (and altitude) dependent mass loss, energy balance, and dynamics to identify which processes determine their survival for a range of entry conditions. We develop a general numerical model for the micrometeoroid-atmosphere interaction. The equations of motion, energy, and mass balance are simultaneously solved for different entry conditions (e.g. initial radii, incident speeds and angles). Several different physical processes are taken into account in the equation of energy and in the mass balance, in order to understand their relative roles and evolution during the micrometeoroid-atmosphere interaction. In particular, to analyze the micrometeoroid thermal history we include in the energy balance: collisions with atmospheric particles, micrometeoroid radiation emission, evaporation, melting, sputtering and kinetic energy of the ablated mass. Low entry velocities and grazing incidence angles favor micrometeoroid survival. Among those that survive, our model distinguishes (1) micrometeoroids who reach the melting temperature and for which melting is the most effective mass loss mechanism, and (2) micrometeoroids for which ablation due to evaporation causes most of the the mass loss. Melting is the most effective cooling mechanism. Sputtering-induced mass loss is negligible.
The discovery of a large putative impact crater buried beneath Hiawatha Glacier along the margin of the northwestern Greenland Ice Sheet has reinvigorated interest into the nature of large impacts into thick ice masses. This circular structure is rel atively shallow and exhibits a small central uplift, whereas a peak-ring morphology is expected. This discrepancy may be due to long-term and ongoing subglacial erosion but may also be explained by a relatively recent impact through the Greenland Ice Sheet, which is expected to alter the final crater morphology. Here we model crater formation using hydrocode simulations, varying pre-impact ice thickness and impactor composition over crystalline target rock. We find that an ice-sheet thickness of 1.5 or 2 km results in a crater morphology that is consistent with the present morphology of this structure. Further, an ice sheet that thick substantially inhibits ejection of rocky material, which might explain the absence of rocky ejecta in most existing Greenland deep ice cores if the impact occurred during the late Pleistocene. From the present morphology of the putative Hiawatha impact crater alone, we cannot distinguish between an older crater formed by a pre-Pleistocene impact into ice-free bedrock or a younger, Pleistocene impact into locally thick ice, but based on our modeling we conclude that latter scenario is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا