ﻻ يوجد ملخص باللغة العربية
We demonstrate theoretically the possibility of spinodal de-wetting in heterostructures made of light--atom liquids (hydrogen, helium, and nitrogen) deposited on suspended graphene. Extending our theory of film growth on two-dimensional materials to include analysis of surface instabilities via the hydrodynamic Cahn--Hilliard-type equation, we characterize in detail the resulting spinodal de-wetting patterns. Both linear stability analysis and advanced computational treatment of the surface hydrodynamics show micron-sized (generally material and atom dependent) patterns of dry regions. The physical reason for the development of such instabilities on graphene can be traced back to the inherently weak van der Waals interactions between atomically thin materials and atoms in the liquid. Similar phenomena occur in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides. Thus two-dimensional materials represent a universal theoretical and technological platform for studies of spinodal de-wetting.
Graphene has been predicted to develop a magnetic moment by proximity effect when placed on a ferromagnetic film, a promise that could open exciting possibilities in the fields of spintronics and magnetic data recording. In this work, we study in det
We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases composed of hydrogen, helium and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, s
Phase-formation of surface alloying by spinodal decomposition has been studied for the first time at an electrified interface. For this aim Zn was electrodeposited on Au(111) from the ionic liquid AlCl3-MBIC (58:42) containing 1 mM Zn(II) at differen
Electrons in two-dimensional hexagonal materials have valley degree of freedom, which can be used to encode and process quantum information. The valley-selective excitations, governed by the circularly polarised light resonant with the materials band
We propose a realistic regime to detect the light-induced topological band gap in graphene via time-resolved angle-resolved photoelectron spectroscopy (trARPES), that can be achieved with current technology. The direct observation of Floquet-Bloch ba