ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Evolution of Neutron-Star -- White-Dwarf Binaries by Roche-Lobe Overflow and Gravitational Wave Radiation

96   0   0.0 ( 0 )
 نشر من قبل Shenghua Yu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star-white-dwarf (NS-WD) binaries, and the detectability of these binaries by space GW detectors (e.g., Laser Interferometer Space Antenna, LISA; Taiji; Tianqin). A NS-WD binary becomes contact when the WD component fills its Roche lobe, at which the GW frequency ranges from ~0.0023 to 0.72 Hz for WD with masses ~0.05-1.4 Msun. We find that some high-mass NS-WD binaries may undergo direct coalescence after unstable mass transfer. However, the majority of NS-WD binaries can avoid direct coalescence because mass transfer after contact can lead to a reversal of the orbital evolution. Our model can well interpret the orbital evolution of the ultra-compact X-ray source 4U 1820--30. For a 4-year observation of 4U 1820--30, the expected signal-to-noise-ratio (SNR) in GW characteristic strain is ~11.0/10.4/2.2 (LISA/Taiji/Tianqin). The evolution of GW frequencies of NS-WD binaries depends on the WD masses. NS-WD binaries with masses larger than 4U 1820--30 are expected to be detected with significantly larger SNRs. For a (1.4+0.5) Msun NS-WD binary close to contact, the expected SNR for a one week observation is ~27/40/28 (LISA/Taiji/Tianqin). For NS-WD binaries with masses of (1.4+>~1.1) Msun, the significant change of GW frequencies and amplitudes can be measured, and thus it is possible to determine the binary evolution stage. At distances up to the edge of the Galaxy (~100 kpc), high-mass NS-WD binaries will be still detectable with SNR>~1.



قيم البحث

اقرأ أيضاً

With the increasing number of observed magnetic white dwarfs (WDs), the role of magnetic field of the WD in both single and binary evolutions should draw more attentions. In this study, we investigate the WD/main-sequence star binary evolution with t he Modules for Experiments in Stellar Astrophysics (MESA code), by considering WDs with non-, intermediate and high magnetic field strength. We mainly focus on how the strong magnetic field of the WD (in a polar-like system) affects the binary evolution towards type Ia supernovae (SNe Ia). The accreted matter goes along the magnetic field lines and falls down onto polar caps, and it can be confined by the strong magnetic field of the WD, so that the enhanced isotropic pole-mass transfer rate can let the WD grow in mass even with a low mass donor with the low Roche-lobe overflow mass transfer rate. The results under the magnetic confinement model show that both initial parameter space for SNe Ia and characteristics of the donors after SNe Ia are quite distinguishable from those found in pervious SNe Ia progenitor models. The predicted natures of the donors are compatible with the non-detection of a companion in several SN remnants and nearby SNe.
134 - S. Yu , , L. Li 2009
In this study, we concentrate on the formation and evolution of hot subdwarfs binaries through the stable Roche lobe overflow (RLOF) channel of intermediate-mass binaries. We aim at setting out the properties of hot subdwarfs and their progenitors, s o that we can understand the formation and evolution of hot subdwarfs comprehensively. We have obtained the ranges of the initial parameters of progenitor binaries and the properties of hot subdwarfs through the stable RLOF channel of intermediate-mass binaries, e.g. mass, envelope mass and age of hot subdwarfs. We have found that hot subdwarfs could be formed through the stable Roche lobe overflow at main sequence and Hertzsprung gap. We have also found that some subdwarf B or OB stars have anomalous high mass (around 1 solar mass) with thick envelope (0.07 solar mass to 0.16 solar mass) in our models. By comparing our theoretical results with observations on the hot subdwarfs in open clusters, we suppose a quantity of hot subdwarfs in binary systems might be found in open clusters in the future.
121 - Stuart F. Taylor 2010
The destruction of planets by migration into the star will release significant amounts of energy and material, which will present opportunities to observational study planets in new ways. To observe planet destruction, it is important to understand t he processes of how this energy and material is released as planets are destroyed. It is not known how fast the large amounts of energy and material are released, making it difficult to predict how observable planet destruction will be. There is a huge amount of energy made available by falling deep into the stars potential well: Simple calculations show that many of the currently known hot Jupiters can potentially produce events as luminous as a small nova if the energy is released fast enough. To observe these events, the important questions are how will this energy be released, and whether the energy will be released rapidly enough to create an event luminous enough to be found by transient surveys. Alternatively, if planet destruction is slowed by the inward migration alternating with periods of outward migration caused by Roche lobe overflow (RLOF), then the primary signature may be the effects of the release of large amounts of gas. The infall of this gas also may significantly contribute to the systems luminosity. The release of planetary gas may be a searchable signature of planet destruction. Signs of runaway RLOF and outward or alternating RLOF should be searched for. Observing planet destruction will provide a new window for study of exoplanets.
98 - O. A. Kuznetsov 1998
We consider the dependence of the internal structure of a neutron star in a close binary system on the semi-major axis of the binary orbit, focusing on the case when the Roche lobes of the components are nearly filled. We adopt a polytropic equation of state. The temporal evolution of the semi-major axis and its dependence on the mass ratio of the binary components and the polytropic index are determined. The calculation are carried out right up to the moment of contact, when quasi-stationary model becomes invalid. We analyze differences in the shapes of the pulses of gravitational radiation emitted by a pair of point masses and by a binary neutron star, taking into account its internal structure and tidal deformations.
79 - L. Ducci , P. Romano , L. Ji 2019
Supergiant fast X-ray transients (SFXTs) are X-ray binary systems with a supergiant companion and likely a neutron star, which show a fast ($sim 10^3$ s) and high variability with a dynamic range up to $10^{5-6}$. Given their extreme properties, they are considered among the most valuable laboratories to test accretion models. Recently, the orbital parameters of a member of this class, IGR J08408-4503, were obtained from optical observations. We used this information, together with X-ray observations from previous publications and new results from X-ray and optical data collected by INTEGRAL and presented in this work, to study the accretion mechanisms at work in IGR J08408-4503. We found that the high eccentricity of the compact object orbit and the large size of the donor star imply Roche lobe overflow (RLO) around the periastron. It is also likely that a fraction of the outer layers of the photosphere of the donor star are lost from the Lagrangian point $L_2$ during the periastron passages. On the basis of these findings, we discuss the flaring variability of IGR J08408-4503 assuming the presence of an accretion disc. We point out that IGR J08408-4503 may not be the only SFXT with an accretion disc fueled by RLO. These findings open a new scenario for accretion mechanisms in SFXTs, since most of them have so far been based on the assumption of spherically symmetric accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا