ﻻ يوجد ملخص باللغة العربية
We investigate the effect of the population III (Pop III) stars supernova explosion~(SN) on the high redshifts reionization history using the latest Planck data. It is predicted that massive Pop~III stars~($130M_odotleq Mleq 270M_odot$) explode energetically at the end of their stellar life as pair-instability supernovae (PISNe). In the explosion, supernova remnants grow as hot ionized bubbles and enhance the ionization fraction in the early stage of the reionization history. This enhancement affects the optical depth of the cosmic microwave background~(CMB) and generates the additional anisotropy of the CMB polarization on large scales. Therefore, analyzing the Planck polarization data allows us to examine the Pop III star SNe and the abundance of their progenitors, massive Pop III stars. In order to model the SN contribution to reionization, we introduce a new parameter $zeta$, which relates to the abundance of the SNe to the collapse fraction of the Universe. Using the Markov chain Monte Carlo method with the latest Planck polarization data, we obtain the constraint on our model parameter, $zeta$. Our constraint tells us that observed CMB polarization is consistent with the abundance of PISNe predicted from the star formation rate and initial mass function of Pop III stars in recent cosmological simulations. We also suggest that combining further observations on the late reionization history such as high redshift quasi-stellar object~(QSO) observations can provide tighter constraints and important information on the nature of Pop III stars.
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the
We present a final description of the data-processing pipeline for the Planck, Low Frequency Instrument (LFI), implemented for the 2018 data release. Several improvements have been made with respect to the previous release, especially in the calibrat
We use cosmological simulations to assess how the explosion of the first stars in supernovae (SNe) influences early cosmic history. Specifically, we investigate the impact by SNe on the host systems for Population~III (Pop~III) star formation and exp
We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on $r$ and $n_S$, including post-inflationary history of the universe. We find that, for
The European Space Agencys Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 Octob