ﻻ يوجد ملخص باللغة العربية
Imaging individual vacancies in solids and revealing their interactions with solute atoms remains one of the frontiers in microscopy and microanalysis. Here we study a creep-deformed binary Ni-2 at.% Ta alloy. Atom probe tomography reveals a random distribution of Ta. Field ion microscopy, with contrast interpretation supported by density-functional theory and time-of-flight mass spectrometry, evidences a positive correlation of tantalum with vacancies. Our results support solute-vacancy binding, which explains improvement in creep resistance of Ta-containing Ni-based superalloys and helps guide future material design strategies.
Radiation-induced segregation (RIS) of solutes in materials exposed to irradiation is a well-known problem. It affects the life-time of nuclear reactor core components by favouring radiation-induced degradation phenomena such as hardening and embritt
We present an extensive first-principles database of solute-vacancy, homoatomic, heteroatomic solute-solute, and solute-solute-vacancy binding energies of relevant alloying elements in aluminum. We particularly focus on the systems with major alloyin
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformat
An operando investigation of graphene growth on (100) grains of polycrystalline nickel (Ni) surfaces was performed by means of variable-temperature scanning tunneling microscopy complemented by density functional theory simulations. A clear descripti
High-entropy alloys (HEAs) composed of multiple principal elements have been shown to offer improved radiation resistance over their elemental or dilute-solution counterparts. Using NiCoFeCrMn HEA as a model, here we introduce carbon and nitrogen int