ﻻ يوجد ملخص باللغة العربية
Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.
Batch normalization (BN) is a technique to normalize activations in intermediate layers of deep neural networks. Its tendency to improve accuracy and speed up training have established BN as a favorite technique in deep learning. Yet, despite its eno
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems,
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f
Deep neural networks with batch normalization (BN-DNNs) are invariant to weight rescaling due to their normalization operations. However, using weight decay (WD) benefits these weight-scale-invariant networks, which is often attributed to an increase