ﻻ يوجد ملخص باللغة العربية
In recent work, Gourv`es, Lesca, and Wilczynski propose a variant of the classic housing markets model where the matching between agents and objects evolves through Pareto-improving swaps between pairs of adjacent agents in a social network. To explore the swap dynamics of their model, they pose several basic questions concerning the set of reachable matchings. In their work and other follow-up works, these questions have been studied for various classes of graphs: stars, paths, generalized stars (i.e., trees where at most one vertex has degree greater than two), trees, and cliques. For generalized stars and trees, it remains open whether a Pareto-efficient reachable matching can be found in polynomial time. In this paper, we pursue the same set of questions under a natural variant of their model. In our model, the social network is replaced by a network of objects, and a swap is allowed to take place between two agents if it is Pareto-improving and the associated objects are adjacent in the network. In those cases where the question of polynomial-time solvability versus NP-hardness has been resolved for the social network model, we are able to show that the same result holds for the network-of-objects model. In addition, for our model, we present a polynomial-time algorithm for computing a Pareto-efficient reachable matching in generalized star networks. Moreover, the object reachability algorithm that we present for path networks is significantly faster than the known polynomial-time algorithms for the same question in the social network model.
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et a
The Possible-Winner problem asks, given an election where the voters preferences over the set of candidates is partially specified, whether a distinguished candidate can become a winner. In this work, we consider the computational complexity of Possi
It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare the candidates having the best chance of winni
The cost-sharing connection game is a variant of routing games on a network. In this model, given a directed graph with edge-costs and edge-capacities, each agent wants to construct a path from a source to a sink with low cost. The cost of each edge
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the prefe